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SUMMARY

The heterodimeric tumor-suppressor complex
BRCA1/BARD1 exhibits E3 ubiquitin ligase ac-
tivity and participates in cell proliferation and
chromosome stability control by incompletely
defined mechanisms. Here we show that, in both
mammalian cells and Xenopus egg extracts,
BRCA1/BARD1 is required for mitotic spindle-
pole assembly and for accumulation of TPX2,
a major spindle organizer and Ran target, on
spindle poles. This function is centrosome inde-
pendent, operates downstream of Ran GTPase,
and depends upon BRCA1/BARD1 E3 ubiquitin
ligase activity. Xenopus BRCA1/BARD1 forms
endogenous complexes with three spindle-pole
proteins, TPX2, NuMA, and XRHAMM—a known
TPX2 partner—and specifically attenuates
XRHAMM function. These observations reveal
a previously unrecognized function of BRCA1/
BARD1 in mitotic spindle assembly that likely
contributes to its role in chromosome stability
control and tumor suppression.

INTRODUCTION

Lossof BRCA1 function predisposes to breast and/or ovar-

ian cancer (Miki et al., 1994). How BRCA1 exerts its tumor-

suppression function remains incompletely understood.

The most commonly accepted view attributes this function

to a BRCA1 role in the maintenance of genomic integrity

via participation in homologous-recombination-mediated

double-strand-break repair, the regulation of cell-cycle

checkpoint responses, and centrosome amplification con-

trol (reviewedinDengandWang,2003;Venkitaraman,2002).

In vivo, most BRCA1 molecules form heterodimers with

a structurally related protein, BARD1 (Wu et al., 1996).
BRCA1 and BARD1 each contain an N-terminal RING

domain and two C-terminal BRCT motifs. RING domains

catalyze ubiquitin transfer by interacting with ubiquitin-

conjugating enzymes, and BRCT domains can bind cer-

tain phosphoserine/phosphothreonine-containing peptide

sequences (reviewed in Fang et al., 2003; Glover et al.,

2004). BRCA1/BARD1 heterodimers promote ubiquitin

transfer far more efficiently than either protein alone and

can catalyze autoubiquitination as well as the cell-free

ubiquitination of other proteins (Hashizume et al., 2001;

Mallery et al., 2002; Sato et al., 2004; Starita et al., 2004;

Yu et al., 2006). Whether any of these proteins is a physio-

logical BRCA1/BARD1 substrate is unknown.

BRCA1 and BARD1 are conserved in vertebrates,

plants, and worms but are absent from yeast (Boulton

et al., 2004; Joukov et al., 2001). Inactivation of BRCA1

and BARD1 in mice and frogs yields similar phenotypes,

with embryos dying early in embryogenesis. These em-

bryos also reveal marked chromosomal abnormalities

and a cell proliferation defect (Deng and Wang, 2003; Jou-

kov et al., 2001; Ludwig et al., 1997; McCarthy et al., 2003;

Venkitaraman, 2002 and references therein). The mecha-

nism underlying these abnormalities is incompletely de-

fined, although accumulating DNA damage that in turn

activates cell-cycle checkpoints has been suggested

(reviewed in Deng and Wang, 2003; Venkitaraman, 2002).

Although it was initially believed that BRCA1 functions

largely in S phase (Scully et al., 1997; Venkitaraman,

2002), growing evidence suggests that it is also active in

mitosis. First, aneuploidy is common among BRCA1-

and BARD1-deficient cells (Joukov et al., 2001; McCarthy

et al., 2003; Xu et al., 1999). Second, mouse fibroblasts

that carry a biallelic hypomorphic BRCA1 mutation exhibit

mitotic defects (Xu et al., 1999). Third, BRCA1 binds to

tubulin and localizes in part at centrosomes and spindle

microtubules (Hsu and White, 1998). Fourth, steady-state

levels of BRCA1 remain elevated through mitosis, whereas

the protein is ubiquitinated and undergoes proteasome-

dependent degradation in G1 and S phase (Choudhury
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Figure 1. Cell-Cycle-Dependent Proper-

ties of BRCA1/BARD1

(A) Western blot (W blot) analysis of BRCA1 and

BARD1 in interphase- and metaphase-arrested

egg extract.

(B) BRCA1 and BARD1 associate with each

other in egg extract. Interphase egg extract

was depleted with XBRCA1- or XBARD1-spe-

cific Ab (I) or the corresponding preimmune

IgG (P). One microliter of each sample and

the indicated amount of untreated extract (%

of 1 ml) were analyzed by W blotting.

(C) Cell-cycle-dependent regulation of BRCA1/

BARD1 chromatin binding. Chromatin isolated

from cycling egg extract at the indicated time

points was analyzed by W blotting with the in-

dicated antibodies (upper panel). Aliquots of

extract were also analyzed for DNA replication

and chromatin morphology (lower panel and

data not shown).

(D and E) Immunofluorescence microscopic

images showing localization of BRCA1 in mi-

totic and S phase HeLa cells. Cells were fixed

in methanol/acetone (D) or paraformaldehyde

following permeabilization with digitonin (E)

and stained with the indicated antibodies and

DAPI.
et al., 2004). Finally, in contrast to normal proliferating so-

matic cells that are not viable without BRCA1 or BARD1,

trophoblast giant cells, which endoreduplicate their DNA

without intervening mitoses, remain unaffected when

depleted of either protein (Ludwig et al., 1997; McCarthy

et al., 2003).

We have examined the function of BRCA1/BARD1 het-

erodimers using Xenopus egg extracts as an experimental

system (Murray, 1991). This study demonstrates that

BRCA1/BARD1 ensures fidelity of mitosis and mitotic

exit by regulating Ran-dependent (chromatin-driven) spin-

dle assembly. BRCA1/BARD1 attenuates the activity of

XRHAMM (Xenopus receptor for hyaluronic-acid-medi-

ated motility) (Groen et al., 2004; Maxwell et al., 2003),

thereby permitting the normal concentration of TPX2

(Wittmann et al., 2000) on spindle poles and proper spin-

dle-pole assembly.

RESULTS

Cell-Cycle-Dependent Regulation of BRCA1/BARD1

Xenopus egg extracts were used to assess BRCA1/

BARD1 function because this system faithfully reca-
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pitulates cellular processes in which BRCA1/BARD1 is

potentially involved. Importantly, these extracts allow one

to bypass the problem of nonviability of BRCA1- and

BARD1-deficient cells and embryos, which normally com-

plicates in vivo studies of these proteins. The levels of

BRCA1 and BARD1 were similar in extracts arrested in

interphase and meiotic metaphase (Figure 1A). A BRCA1

antibody (Ab) depleted �98% of the ambient BRCA1

and BARD1 in both interphase- and metaphase-arrested

extracts, and a BARD1 Ab led to similar effects (Figure 1B

and data not shown). These results imply that nearly all of

the BRCA1 and BARD1 in Xenopus egg extracts exists

in a heterodimeric complex throughout the cell cycle. In

cycling egg extract that oscillates between S phase and

mitosis due to the periodic synthesis and degradation of

cyclin B (Murray, 1991), BRCA1 and BARD1 efficiently

bound to chromatin in interphase and largely dissociated

from it in mitosis (Figure 1C).

In cultured mammalian cells, BRCA1 formed character-

istic foci in a subset of interphase cells as reported (Scully

et al., 1997) (Figure 1D) and was diffusely distributed

throughout the cell and excluded from chromatin during

mitosis (Figure 1D, arrowhead). When soluble proteins



Figure 2. BRCA1/BARD1 Is Required for

Postmitotic Nuclear Assembly

(A and B) BRCA1/BARD1 is dispensable for nu-

clear assembly and DNA replication in inter-

phase egg extract. Aliquots of mock-treated

and BRCA1/BARD1-depleted interphase ex-

tracts were withdrawn 90 min (A) or at the indi-

cated times (B) after addition of sperm chroma-

tin and analyzed for nuclear morphology (A)

and DNA replication (B).

(C) Cycling extracts were supplemented with

sperm chromatin. Aliquots were removed at

the indicated times and analyzed for chromatin

morphology.
were eluted from cells by digitonin permeabilization prior

to fixation, residual BRCA1 was detected in metaphase

cells in foci distributed around, but not on, chromatin or

the mitotic spindle (Figure 1E).

The electrophoretic mobility of BRCA1 and BARD1

decreased as a result of specific phosphorylation during

mitosis (Figure 1A and data not shown), when the hetero-

dimer is largely excluded from chromatin (Figure 1C).

Thus, in egg extract, the heterodimer accumulates in the

nucleus and binds to interphase chromatin. In mitosis,

most BRCA1/BARD1 is phosphorylated and excluded

from chromatin. In mammalian cells, some mitotic BRCA1/

BARD1 is localized in foci that surround chromatin and the

spindle.

BRCA1/BARD1 Is Required for Proper Nuclear

Assembly in Postmitotic Interphase

BRCA1- and BARD1-specific antibodies (Joukov et al.,

2001) were used to deplete the heterodimer from extract

(Figure 1B), and chromatin dynamics during interphase

and mitosis was analyzed. When demembranated sperm

chromatin was added to BRCA1/BARD1-depleted inter-

phase extract, chromatin decondensation, nuclear-enve-

lope formation, and the rate of DNA replication were the

same as in mock-treated extract (Figures 2A and 2B).

Thus, BRCA1/BARD1 is dispensable for S phase progres-

sion in egg extract. Similarly, when sperm chromatin was

added to mock-treated or BRCA1/BARD1-depleted cy-

cling extract, it efficiently decondensed and formed nuclei

(Figure 2C, 25 min and 55 min). Both extracts subse-

quently entered mitosis as seen by nuclear-envelope

breakdown and chromatin condensation (Figure 2C, 85

min). The extracts exited mitosis and continued to cycle

nearly synchronously. Upon mitotic exit, nuclei of rela-

tively uniform size formed in the mock-treated extract

(Figure 2C, upper row, 130 min and 225 min). In contrast,
postmitotic nuclei in BRCA1/BARD1-depleted extract

were heterogeneous, with the majority being 3 to 10 times

smaller than control nuclei or nuclei formed in the immuno-

depleted extract during the first, premitotic interphase

(Figure 2C, lower row, 130 min and 225 min versus 55 min).

Postmitotic interphase can be also generated by prein-

cubating sperm chromatin in metaphase-arrested (also

referred to as cytostatic factor [CSF]-arrested) egg extract

followed by release into interphase (detailed in the Sup-

plemental Experimental Procedures in the Supplemental

Data available with this article online). In such settings,

uniform nuclei were observed in mock-treated extract. In

contrast, nuclei that formed in BRCA1/BARD1-depleted

extract upon release from the metaphase arrest varied in

size, being 3 to 10 times smaller compared to the control

nuclei (Figure S1A). Importantly, this defect was reversed

by supplementing the depleted extract with immunoaffin-

ity purified, recombinant Xenopus BRCA1/BARD1 hetero-

dimer (rBRCA1/BARD1, detailed below) (Figures S1C and

S1D; see also Supplemental Results).

Taken together, these results demonstrate that, in

Xenopus egg extract, BRCA1/BARD1 is dispensable for

certain interphase functions such as nuclear assembly and

DNA replication. However, passage of chromatin through

mitosis establishes a requirement for BRCA1/BARD1 for

proper nuclear assembly.

BRCA1/BARD1 Is Required for Proper Mitotic

Spindle Assembly

Given BRCA1/BARD1’s involvement in postmitotic inter-

phase, it was important to determine whether the hetero-

dimer is also required for the execution of mitosis itself.

To this end, we examined the effect of BRCA1/BARD1

depletion on metaphase spindle assembly. A standard

approach that includes replication of sperm-chromatin

DNA in interphase extract followed by the addition of
Cell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc. 541



Figure 3. BRCA1/BARD1 Is Required for Proper Mitotic Spindle Assembly

(A and B) Sperm chromatin was replicated in mock-treated and BRCA1/BARD1-depleted, CSF-arrested extracts supplemented with rhodamine-

labeled tubulin and, where indicated, rBRCA1/BARD1. The extracts were driven into metaphase and were analyzed 1 hr later for spindle morphology.

(A) Representative metaphase spindles.

(B) Spindle structures were categorized based on the degree of chromosome alignment (top panel) and were quantified (bottom panel).

(C–E) Mitotic defects in BRCA1/BARD1 siRNA-transfected HeLa cells.

(C) Representative images of normal (top panels) and disorganized (bottom panels) metaphase spindles assembled in mock-treated and BRCA1/

BARD1-depleted cells, respectively.

(D) Quantitative analysis of normal and abnormal mitotic spindle structures that appeared in mock-treated versus BRCA1/BARD1-depleted cells.

Examples are shown in Figure S3B.

(E) Representative examples of chromosome segregation defects in BRCA1/BARD1-deficient cells (arrowheads). Note inefficient focusing of micro-

tubules into spindle poles in anaphase (DBRCA1/BARD1, ‘‘Tubulin’’ panel). In all images, microtubules are in red and chromatin is pseudocolored

green.
CSF-arrested extract to induce the metaphase state was

employed (Desai et al., 1999). In the mock-treated extract,

most spindles were largely bipolar with focused spindle

poles, and chromosomes properly congressed at the

metaphase plate (Figures 3Aa and 3Ab). In contrast, most
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spindles in the BRCA1/BARD1-depleted extract con-

tained unfocused spindle poles and were more rounded.

They also exhibited a higher density of microtubules and

a failure of chromosome congression at the metaphase

plate (Figures 3Ad and 3Ae). To confirm that the spindle



defect observed in immunodepleted extract was a specific

outcome of eliminating BRCA1/BARD1, a recombinant

heterodimer was produced by coexpression of Xenopus

BRCA1 and BARD1 in cultured insect cells followed by

immunoaffinity purification. Xenopus rBRCA1/BARD1

(Figure S2A, lane 2), like its human counterpart (Mallery

et al., 2002), both displayed autoubiquitination and ubiqui-

tinated certain histones, implying that it is biologically

active (Figure S2B, lanes 2 and 4). The mitotic spindle phe-

notype was substantially alleviated by supplementing

depleted extract with rBRCA1/BARD1 (Figure 3Af). The ef-

fect of BRCA1/BARD1 depletion and rescue on chromo-

some alignment is quantified in Figure 3B.

We asked whether the mitotic spindle defects seen

in depleted Xenopus egg extracts could be observed in

BRCA1/BARD1-deficient cells. HeLa cells were trans-

fected with control or BRCA1- and BARD1-specific siRNA

oligonucleotides (Figure S3A), and mitotic spindle mor-

phology was assessed. The mitotic figures were catego-

rized based on the stage of mitosis in which they were

detected (i.e., prophase, metaphase, anaphase, and telo-

phase) and the extent to which they were defective

(Figure S3B). The percentage of mitotic figures in each

category was calculated (Figure 3D). BRCA1/BARD1 de-

pletion did not affect the morphology or proportion of cells

in prophase. However, it reduced from 35% to 10% the

abundance of normal metaphase cells with bipolar spin-

dles and properly aligned chromosomes. Accordingly,

BRCA1/BARD1-deficient cells displayed a higher propor-

tion of disorganized mitotic spindles (34% versus 14%).

The metaphase spindle defects in HeLa cells and Xenopus

egg extracts were remarkably similar (Figure 3C versus

Figure 3A). In addition, BRCA1/BARD1 siRNA-treated cells

exhibited a severe defect in chromosome segregation

during anaphase, revealing chromosomal bridges and

lagging chromosomes (Figures 3D and 3E, arrowheads

in the ‘‘Anaphase’’ panel). At telophase, some lagging

chromosomes became enclosed in nuclear envelopes,

giving rise to micronuclei (Figure 3E, arrowheads in ‘‘Telo-

phase’’ panel).

Taken together, these results indicate that BRCA1/

BARD1 is required during mitosis for proper mitotic spindle

assembly and at the mitosis-to-interphase transition for

proper chromosome segregation and nuclear assembly.

BRCA1/BARD1 Regulates Ran-Driven

Microtubule Organization

We observed that BRCA1/BARD1-depleted extracts and

cells share major phenotypic features with cells in which

the Ran pathway or certain downstream targets of Ran-

GTP are disrupted. These features include mitotic spindle

defects, chromosome missegregation, and micronucleus

formation (Compton and Cleveland, 1993; Merdes and

Cleveland, 1998; Moore et al., 2002; O’Brien and Wiese,

2006; Wang et al., 2004). We therefore asked whether

BRCA1/BARD1 is involved in Ran-dependent spindle as-

sembly. Addition of Ran-GTP to Xenopus egg extract is

sufficient to cause the formation of spindle-related struc-
tures, called asters and pseudospindles, in the absence

of DNA and centrosomes (Carazo-Salas et al., 1999; Wilde

and Zheng, 1999). This phenomenon imitates chromatin-

driven spindle assembly and is likely dependent upon

achieving high local concentrations of spindle assembly

factors (SAFs) (e.g., NuMA and TPX2) following their re-

lease by Ran-GTP from inhibitory binding by the importin

a/b heterodimer (reviewed in Fant et al. 2004; Hetzer

et al., 2002; Quimby and Dasso, 2003). When a constitu-

tively active Ran mutant defective in GTP hydrolysis

(Ran(Q69L)-GTP) was added to mock-treated extract,

asters with radially oriented microtubules and sharply

focused poles formed (Figure 4Aa), as reported (Carazo-

Salas et al., 1999). In contrast, asters assembled in

BRCA1/BARD1-depleted extract appeared larger in size

and contained dense, disoriented microtubules with

poorly focused poles (Figures 4Ab, 4Ac, 4B, and 4C). In the

most severe cases, asters lacked defined centers (Figures

4Ac and 4Bd). Importantly, the number of Ran-induced

asters was not affected by BRCA1/BARD1 depletion

(data not shown), implying that BRCA1/BARD1 is not

essential for microtubule (MT) assembly per se. Addition

of wild-type (WT) rBRCA1/BARD1 to depleted extract sig-

nificantly restored aster MT organization in terms of both

qualitative appearance (Figure 4B) and absolute size (Fig-

ure 4C). Furthermore, a mutant rBRCA1(I26A)/BARD1 het-

erodimer selectively defective in ubiquitin transfer (Brzovic

et al., 2003; Figure S2A, lane 3; Figure S2B, lanes 3 and 5

versus lanes 2 and 4) was significantly less efficient than

its WT counterpart in rescuing these defects (Figures

4B–4D). These results indicate that BRCA1/BARD1 and

its E3 ubiquitin ligase activity participate in MT organiza-

tion and spindle-pole assembly downstream of Ran-GTP.

BRCA1/BARD1 Controls Targeting of TPX2

to Spindle Poles

Whether proteins involved in spindle-pole organization are

affected by BRCA1/BARD1 depletion was investigated

next. NuMA and TPX2 both participate in spindle-pole as-

sembly and are targets of Ran during mitosis (Fant et al.,

2004; Hetzer et al., 2002; Merdes et al., 2000; Wittmann

et al., 2000). In addition, XRHAMM was recently impli-

cated in chromatin-driven MT nucleation and spindle-

pole formation (Groen et al., 2004). During mitosis, when

the nuclear envelope disassembles, XRHAMM binds to

microtubules and, in association with g-TuRC and TPX2,

facilitates Ran-dependent MT nucleation and concentra-

tion of TPX2 on spindle poles via a currently unknown

mechanism (Groen et al., 2004; Maxwell et al., 2003). In

mock-treated extract, NuMA, g-tubulin, XRHAMM, and

TPX2 efficiently bound to microtubules and concentrated

on aster poles (Figures 5A and 5B). In BRCA1/BARD1-

depleted extract, these proteins also bound to microtu-

bules: NuMA accumulated on the aster poles almost as

efficiently as in mock-treated extracts (Figure 5A, row 2

versus 1); XRHAMM and g-tubulin were also concentrated

on aster poles, although in a more diffuse and less orderly

manner compared to mock-treated extract (Figure 5A,
Cell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc. 543



Figure 4. BRCA1/BARD1 Regulates Ran-

Dependent MT Organization

(A) Fluorescence micrographs (top panels)

and 3D surface plots (bottom panels) of the

representativeRan-GTP-induced MT asters as-

sembled in mock-treated and BRCA/BARD1-

depleted extracts. Scale bar = 10 mm.

(B–D) Rescue of the MT aster structures with

recombinant BRCA1/BARD1.

(B) Ran-GTP-induced MT asters assembled in

mock-treated and BRCA1/BARD1-depleted

extract were supplemented with buffer or with

recombinant WT or enzymatically deficient

(I26A dimer) BRCA1/BARD1. Asters were cate-

gorized based on the degree of aster-pole

focusing (upper panel), and each category was

quantified (lower panel).

(C) Average diameter of asters in each group.

Error bars represent standard deviations (n =

120).

(D) W blot analysis of the extracts.
row 4 versus 3). In contrast, TPX2 was diffusely localized

along the length of microtubules and failed to concentrate

on aster poles (Figure 5B, row 2 versus 1). Addition of WT

rBRCA1/BARD1 restored both aster MT organization and

the concentration of TPX2 on aster poles, whereas

rBRCA1(I26A)/BARD1 was less efficient compared to the

WT heterodimer in rescuing both defects (Figure 5B, row

3 versus 2 and 4).

As stated above, Ran-GTP-induced aster formation

utilizes the chromatin-driven/anastral pathway of spindle

assembly. This pathway operates in cells that lack a de-

fined MT-organizing center (MTOC), like oocytes of insects

and vertebrates and cells of higher plants. In contrast, in

most somatic cells, which contain centrosomes, the anas-
544 Cell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc.
tral pathway likely cooperates with the MTOC-driven path-

way of spindle assembly, with the latter being predominant

(reviewed in Fant et al., 2004). We therefore asked whether,

in the presence of centrosomes, BRCA1/BARD1 is also

needed for efficient TPX2 accumulation on spindle poles.

Notably, each sperm pronucleus contains a centrosome

attached to its surface. Thus, MT architecture and TPX2

localization were compared in asters induced by sperm

chromatin in mock-treated and BRCA1/BARD1-depleted

CSF-arrested extracts. Although both extracts supported

formation of microtubular structures around chromatin

with similar efficiency, there was a profound difference in

their architecture. Asters and spindles in the mock-treated

extract had radial microtubules and sharply focused poles,



Figure 5. BRCA1/BARD1 Is Required for Concentrating TPX2 on Spindle Poles

(A) IF images of Ran-GTP-induced MT asters assembled in mock-treated and BRCA1/BARD1-depleted extracts after methanol fixation followed by

staining with antibodies directed against NuMA and a-tubulin (rows 1 and 2) or g-tubulin and XRHAMM (rows 3 and 4).

(B and C) Representative Ran-GTP-induced (B) and chromatin-induced (C) asters assembled in mock-treated and BRCA1/BARD1-depleted extracts

supplemented with rhodamine-labeled tubulin, Alexa Fluor 488-labeled anti-TPX2 Ab, and the indicated components.

(D) Representative IF images of TPX2 localization on metaphase spindles in HeLa cells transfected with control or BRCA1- and BARD1-specific siRNAs.
with TPX2 concentrated at the center of each pole (Fig-

ure 5C, row 1). In contrast, in BRCA1/BARD1-depleted ex-

tract, chromatin-induced spindles exhibited disorganized

poles, and TPX2 diffusely bound to microtubules (Fig-

ure 5C, row 3; for more examples, see Figure S4).

We next compared the localization of TPX2 on meta-

phase spindles of HeLa cells transfected with either con-

trol or BRCA1/BARD1-specific siRNAs. In control cells,

TPX2 tightly concentrated in the vicinity of spindle poles of

all metaphase spindles analyzed. In contrast, in �20% of

BRCA1/BARD1 siRNA-treated metaphase cells, TPX2

was diffusely localized along the length of spindle micro-
C

tubules and failed to concentrate on spindle poles (Fig-

ure 5D, compare panels in row 2).

These observations demonstrate that BRCA1/BARD1

and its E3 ubiquitin ligase activity control spindle-pole

assembly by facilitating targeting of TPX2 to spindle poles

independent of centrosomes.

BRCA1/BARD1 Associates with

Spindle-Pole-Organizing Proteins

To test whether BRCA1/BARD1 associates with spindle-

pole-organizing proteins, we analyzed BRCA1 immuno-

precipitates (IPs) for the presence of TPX2, NuMA, and
ell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc. 545



XRHAMM. Both NuMA and XRHAMM were significantly

enriched in these fractions compared to control IPs

(Figure 6A, lane 3 versus 2). Although TPX2 was not

enriched in anti-BRCA1 IPs (Figure 6A), an identical ex-

periment performed with TPX2 Ab led to specific co-

immunoprecipitation of BRCA1/BARD1 (Figure 6B, lanes

5 and 6 versus 1 and 2). An analogous result was obtained

with XRHAMM- and NuMA-specific antibodies (Fig-

ure 6B, lanes 3 and 4 versus 1 and 2; Figure 6C, lane 3

versus 2).

An association between XRHAMM and TPX2 requires

additional factors present in extract (Groen et al., 2004).

One could envision that BRCA1/BARD1 regulates the

XRHAMM-TPX2 interaction by ubiquitination. However,

this scenario seems unlikely since the XRHAMM-TPX2

interaction was not affected by BRCA1/BARD1 depletion

(data not shown) or by supplementing an extract with

Figure 6. BRCA1/BARD1 Interacts with Spindle-Pole-Orga-

nizing Proteins

(A–C) CSF-arrested extracts were incubated for 1 hr at 21�C followed

by IP with nonimmune Ig (Control) or the indicated antibodies. The IPs

were analyzed by W blotting with the indicated antibodies. Where indi-

cated, the extracts were supplemented with 6 mM ubiquitin aldehyde

(+) prior to incubation (B).

(D) The mock-treated, BRCA1/BARD1-depleted, and BRCA1/BARD1+

XRHAMM-codepleted CSF-arrested extracts were analyzed by W

blotting with the indicated antibodies.
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ubiquitin aldehyde, a potent inhibitor of multiple deubiqui-

tinating enzymes (Figure 6B). Furthermore, BRCA1/BARD1

depletion did not affect the electrophoretic mobility or

abundance of XRHAMM, TPX2, NuMA, or g-tubulin (Fig-

ure 6D and data not shown). The latter outcome likely

reflects the fact that, in egg extract, BRCA1/BARD1 is con-

siderably less abundant than SAFs and therefore interacts

with only a small fraction of these proteins. Indeed, no

more than 5% of NuMA or XRHAMM was found to associ-

ate with BRCA1/BARD1 (Figure 6A).

Given the specific association of BRCA1/BARD1 with

the aforementioned SAFs, binding of BRCA1/BARD1 to

microtubules was also tested in extracts and mammalian

cells. Using multiple BRCA1- and BARD1-monospecific

antibodies, we did not detect clear colocalization of

BRCA1 and/or BARD1 with spindle microtubules (Figures

1D and 1E and data not shown). These results demon-

strate that BRCA1/BARD1 physically interacts with SAFs

participating in the processes of Ran-dependent MT poly-

merization and spindle-pole assembly (i.e., with NuMA,

XRHAMM, and TPX2). Thus far, there is no evidence sup-

porting the notion that BRCA1 and BARD1 are themselves

MT-associated proteins (MAPs) or are involved in MAP

ubiquitination.

BRCA1/BARD1 Regulates Mitotic MT Organization

in a XRHAMM-Dependent Manner

While analyzing the localization of XRHAMM on micro-

tubules, a surprising observation was made. Supplemen-

tation of the BRCA1/BARD1-depleted extract with an

affinity-purified, fluorochrome-labeled Ab directed against

a C-terminal segment of XRHAMM (a-XRHAMM) led to

rescue of the MT aster defects (data not shown). Rescue

was also achieved by supplementing BRCA1/BARD1-

depleted extract with small amounts (5–20 ng/ml) of un-

labeled a-XRHAMM, but not with nonimmune rabbit IgG

(Figure 7B, column 2 versus 1). An identical concentration

of a-XRHAMM had no effect on MT asters in the mock-

treated extract (Figure 7A, column 2 versus 1). Moreover,

MT aster assembly was not affected when either mock-

treated or BRCA1/BARD1-depleted extracts were supple-

mented with similar amounts of Ab directed against NuMA

or TPX2 (data not shown). a-XRHAMM (20 ng/ml) also effi-

ciently rescued defects in asters and spindles assembled

around sperm chromatin in BRCA/BARD1-depleted ex-

tract (Figure 5C, row 4 versus 3).

To elucidate the functions of the region of XRHAMM that

is targeted by a-XRHAMM, we added to extracts a C-ter-

minal fragment of XRHAMM (aa 1038–1175; XRHAMM-

CWT) that had been used as immunogen during Ab devel-

opment. Interestingly, on its own, XRHAMM-CWT (1.25–4

mM) disrupted aster-pole structure and prevented efficient

TPX2 accumulation on aster poles in mock-treated extract

(Figure 7A, column 3 versus 1). Surprisingly, addition of

this peptide to the BRCA1/BARD1-depleted extract had

an even more dramatic effect. MT asters became severely

disorganized, and TPX2 was abnormally bound along the

length of thick, disoriented MT fibers (Figure 7B, column 3



versus 1). XRHAMM-CWT contains a leucine zipper motif,

and its amino acid sequence exhibits high interspecies

conservation (Groen et al., 2004; Maxwell et al., 2003).

This XRHAMM motif appears to be functionally important

because a C-terminal fragment in which three conserved

leucines of the leucine zipper were replaced by arginines

(XRHAMM-CR3) was inactive in disrupting aster structure

and TPX2 targeting to aster poles (Figure 7A, column 4

versus 3). It also failed to generate the ‘‘extreme’’ aster

phenotype produced by the WT peptide in BRCA1/

BARD1-depleted extract (Figure 7B, column 4 versus 3).

Nevertheless, XRHAMM-CR3 retained the ability to bind

a-XRHAMM as efficiently as XRHAMM-CWT (Figure 7C,

lane 5 versus 4). Indeed, when it had fully titrated the avail-

able a-XRHAMM, it abrogated the rescue effect of this Ab

in BRCA1/BARD1-depleted extract (Figure 7B, column 5

versus 2). This result indicates that the effect of the Ab

on aster structure is specific to XRHAMM.

These experiments revealed that a-XRHAMM and the

recombinant peptide fragment against which it was gener-

ated exhibited opposite effects on MT asters in BRCA1/

BARD1-depleted extract: The Ab rescued, while the pep-

tide aggravated, the MT aster phenotype (Table S1). Two

interpretations of these results were considered: (1)

XRHAMM function is inhibited in the absence of BRCA1/

BARD1; the Ab stimulates, while the peptide further in-

hibits XRHAMM function, or (2) XRHAMM is hyperactive

in the absence of BRCA1/BARD1; the Ab downregulates

XRHAMM function, and the peptide activates it.

To distinguish between these possibilities, we com-

pared the effects of adding a-XRHAMM and XRHAMM-

CWT on the structure of asters and TPX2 MT localization

in an extract that had been partially depleted of XRHAMM.

Depleting extract of XRHAMM by 90%–95% significantly

inhibited both the abundance and size of asters (Figures

7D and 7E, column 2 versus 1). Although XRHAMM was

previously shown to be required for TPX2 concentration

on spindle poles (Groen et al., 2004), in this setting,

TPX2 still concentrated at the centers of faint MT asters,

suggesting that the amount of residual XRHAMM in the

extract (5% to 10%) was sufficient to perform certain

key XRHAMM functions, albeit inefficiently. In keeping

with this notion, the effect of adding a-XRHAMM to this

extract was additive with XRHAMM depletion—i.e., the

Ab further decreased the efficiency of aster formation as

well as the intensity of tubulin and TPX2 staining at aster

centers (Figures 7D and 7E, column 3 versus 2). By con-

trast, addition of XRHAMM-CWT to the extract, which

was partially depleted of XRHAMM, led to a substantial

rescue of the aster formation defect: The asters were

larger and TPX2 was concentrated on aster centers,

although in a somewhat more diffuse manner than in asters

assembled in mock-treated extract (Figure 7E, column 4

versus 2). The peptide, however, failed to significantly in-

crease the abundance of asters formed (Figure 7D). These

results indicate that a-XRHAMM inhibits XRHAMM MT-

organizing function, while XRHAMM-CWT can partially

compensate for the loss of XRHAMM function.
Because abnormalities associated with BRCA1/BARD1

depletion were rescued by a-XRHAMM and because

this reagent appears to inhibit XRHAMM function, the

data suggest that XRHAMM is hyperactive in the absence

of BRCA1/BARD1, a condition that is deleterious for spin-

dle function. As a further test of this hypothesis, we asked

whether the spindle-pole defects caused by BRCA1/

BARD1 depletion could be rescued by partial elimination

of XRHAMM from extract. Such treatment indeed rescued

aster architecture and localization of TPX2 on aster poles

to an extent similar to addition of Ab (Figure 7F, column 4

versus columns 2 and 3). Results of the experiments in-

volving a-XRHAMM and XRHAMM-CWT are summarized

in Table S1.

Taken together, these observations indicate that

BRCA1/BARD1 contributes to proper spindle assembly by

attenuating the otherwise excessive activity of XRHAMM

in mitosis.

DISCUSSION

BRCA1/BARD1 Controls Ran-Dependent Mitotic

Spindle Assembly

This study demonstrates a critical role for BRCA1/BARD1

in mitotic MT organization and spindle-pole assembly in

both Xenopus egg extracts and cultured mammalian cells.

Spindle poles form by concentrating MT minus ends at

their centers, a process that does not require centro-

somes but rather relies on the activity of various noncen-

trosomal MAPs as well as plus- and minus-end-directed

motor proteins (reviewed in Fant et al., 2004). Two MAPs

critical for spindle-pole assembly, NuMA and TPX2, are

transported to spindle poles by the minus-end-directed

motor complex, dynein/dynactin (Merdes et al., 2000;

Wittmann et al., 2000). NuMA remained at the centers of

unfocused aster poles that assembled in BRCA1/BARD1-

depleted extract, suggesting that BRCA1/BARD1 is not

required for the dynein/dynactin-dependent transport

per se. TPX2, however, was not effectively targeted to

spindle poles in this setting, providing evidence for a spe-

cific line of communication between BRCA1/BARD1 and

a key step in spindle-pole formation.

Despite spindle abnormalities, BRCA1/BARD1-deficient

cells exited mitosis, in keeping with the previously reported

spindle-assembly checkpoint defect in cells expressing

a hypomorphic mutant BRCA1 allele (Wang et al., 2004;

Xu et al., 1999). However, the fidelity of mitotic exit was

compromised, as evidenced by the appearance of chro-

mosome segregation defects and micronucleus formation

in BRCA1/BARD1-siRNA-treated cells (Figure 3E) and the

postmitotic nuclear-assembly defect in BRCA1/BARD1-

depleted egg extract (Figure 2C and Figure S1A). Of note,

multiple nuclei and micronuclei were previously observed

in BRCA1-deficient cells, and this defect was thought to

result from multipolar spindle formation due to abnormal

centrosome amplification in these cells (Xu et al., 1999).

We speculate that both spindle-pole abnormalities and

postmitotic nuclear-assembly defects that develop in
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Figure 7. BRCA1/BARD1 Regulates MT Organization in a XRHAMM-Dependent Fashion

Prior to assaying, egg extracts were supplemented with rhodamine-labeled tubulin and Alexa Fluor 488-labeled anti-TPX2 Ab; MT asters were in-

duced by the addition of Ran(Q69L)-GTP (except in [C]).

(A and B) Representative asters assembled in mock-treated (A) and BRCA1/BARD1-depleted (B) extracts supplemented with the indicated compo-

nents.

(C) Disruption of its leucine zipper does not affect XRHAMM-C interaction with the corresponding specific Ab. Equal amounts of recombinant

XRHAMM-CWT (wt) and XRHAMM-CR3 (R3) were immunoprecipitated with the affinity-purified a-XRHAMM (lanes 4 and 5, respectively) or nonim-

mune IgG (lanes 3 and 6, respectively) and analyzed by SDS-PAGE followed by staining of the membrane with Ponceau S (IgG) or S protein-HRP

(XRHAMM-C). Note that XRHAMM-CR3 exhibits slightly slower electrophoretic mobility than XRHAMM-CWT.

(D and E) Quantitative analysis of asters (D) and representative structures (E) assembled in the mock-treated and XRHAMM-depleted extracts sup-

plemented with the indicated components. Values in (D) represent means ± standard deviations of two independent measurements.
548 Cell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc.



BRCA1/BARD1-deficient settings can be attributed to de-

regulation of TPX2. In this regard, Ran-GTP and its target

proteins (and BRCA1/BARD1 partners) TPX2 and NuMA

play a role in both spindle formation/function and post-

mitotic nuclear assembly (Compton and Cleveland, 1993;

Hetzer et al., 2002; Merdes and Cleveland, 1998; O’Brien

and Wiese, 2006). Spindle-pole disorganization due to

mitotic TPX2 dysfunction may lead to inefficient chromo-

some tethering to spindle poles in anaphase/telophase,

followed by enclosure of the resulting loose/lagging chro-

mosomes by the nuclear envelope. Such a mechanism

has been proposed as the reason for similar abnormalities

seen in cells with perturbed NuMA function (Merdes and

Cleveland, 1998). In addition, TPX2 has been implicated in

nuclear assembly and nuclear-envelope growth indepen-

dent of its mitotic function (O’Brien and Wiese, 2006). The

evidence for a biochemical interaction of BRCA1/BARD1

with TPX2, XRHAMM, and NuMA in egg extract supports

the existence of a functional link between these proteins.

Moreover, in human cell extracts, BRCA1/BARD1 also

coexists in a complex with NuMA (R. Greenberg, B. Sob-

hian, and D.M.L., unpublished data). Thus, in both mam-

malian cells and frog egg extracts, there is evidence for

BRCA1/BARD1 interacting with spindle-pole constituents.

One wonders whether NuMA and TPX2, which, like

BRCA1/BARD1, are localized in the interphase nucleus

(Compton and Cleveland, 1993; Wittmann et al., 2000),

also engage in certain postdamage S phase functions

of BRCA1/BARD1 (e.g., repair of double-strand breaks,

checkpoint activation, etc.). In this regard, there is a grow-

ing list of proteins, including members of the Ran pathway,

that perform seemingly unrelated functions during mitosis

and interphase (reviewed in Hetzer et al., 2005; Quimby

and Dasso, 2003).

BRCA1/BARD1 Regulates the MT-Organizing

Function of XRHAMM

This study demonstrates that BRCA1/BARD1 facilitates

TPX2 targeting to spindle poles by downmodulating

XRHAMM function. Data presented here also implicate

the highly conserved, leucine-zipper-bearing C-terminal

domain of XRHAMM as a contributor to those aspects of

MT-organizing function that are regulated by BRCA1/

BARD1. Given that the leucine zipper is a potential pro-

tein-interacting motif, we speculate that the C-terminal

domain of XRHAMM is involved in the formation of

XRHAMM homodimers or heterodimers with other SAFs

and that these interactions are important for targeting of

TPX2 to spindle poles. In a similar vein, one way of

explaining the XRHAMM-agonistic effect of XRHAMM-

CWT is to propose that it interferes with the homo- and/or

heterodimerization of endogenous XRHAMM.
The E3 ubiquitin ligase activity of BRCA1/BARD1 ap-

pears to be involved in its MT-organizing function because

an enzymatically deficient heterodimer, rBRCA1(I26A)/

BARD1, was considerably less efficient than its WT coun-

terpart in reversing an abnormal aster phenotype. Con-

ceivably, BRCA1/BARD1 ubiquitinates TPX2, XRHAMM,

and/or NuMA, and this modification is required for the tar-

geting of TPX2 to spindle poles. If BRCA1/BARD1 does

ubiquitinate any of these proteins, the modification might

be transient and/or sensitive to the action of certain deu-

biquitinating enzymes, one of which, BAP1, is known to

associate with BRCA1/BARD1 (Jensen et al., 1998). Alter-

natively, BRCA1/BARD1 might regulate XRHAMM/TPX2

indirectly, via ubiquitination of additional protein partners.

Further studies addressing the functional link between

BRCA1/BARD1 and XRHAMM/TPX2 will be essential for

understanding the mechanisms of spindle-pole assembly.

A New Pathway for BRCA1-Mediated

Tumor Suppression?

There are reasons to believe that the newly uncovered

function of BRCA1/BARD1 in the control of Ran-depen-

dent MT and spindle-pole assembly is related to the ac-

knowledged role of BRCA1 in the maintenance of genome

stability and tumor suppression. Failure to properly form

spindle poles compromises the mechanical integrity of the

spindle apparatus and can lead to chromosome segrega-

tion defects and aneuploidy, abnormalities that are char-

acteristic of both BRCA1/BARD1-deficient cells and many

tumor cells (Fant et al., 2004; Xu et al., 1999). Furthermore,

our study implicates BRCA1 in the regulation of SAFs that

have been previously linked to cancer in their own right

(Figure S5). Aberrant expression of RHAMM and TPX2, as

well as Aurora A, a mitotic kinase whose localization and

activity are regulated by TPX2 (reviewed in Crane et al.,

2003), were linked to malignant transformation as well as

progression of certain human tumors (Crane et al., 2003;

Maxwell et al., 2005; Smith et al., 2006 and references

therein). Moreover, RHAMM and TPX2 are considered

candidate oncoproteins (Hall et al., 1995; Maxwell et al.,

2005; Smith et al., 2006), and Aurora A is a likely oncopro-

tein given that its gene is amplified and its mRNA is over-

expressed in multiple human cancers. Furthermore,

ectopic overexpression of Aurora A is sufficient to trans-

form certain cell types (reviewed in Crane et al., 2003). In

this regard, we have also found that TPX2 mislocalization

in BRCA1-deficient cells leads to mislocalization of Aurora

A (data not shown).

In keeping with our observations, a recent independent

study based on a ‘‘breast cancer network’’ model of

mammalian functional genomic and protein interaction

parameters has suggested a functional link between
(F) Representative asters assembled in the mock-treated (column 1), BRCA1/BARD1-depleted (columns 2 and 3), or BRCA1/BARD1 +

XRHAMM-codepleted (column 4) extracts supplemented with the indicated components. W blots of the corresponding extracts are shown in

Figure 6D.
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BRCA1, RHAMM, and Aurora A (M.A. Pujana et al., un-

published data). In addition, Aurora A has been shown to

phosphorylate both TPX2 and BRCA1, suggesting a possi-

ble feedback connection between this kinase and its reg-

ulators (Crane et al., 2003; Ouchi et al., 2004). Whether

certain aspects of a BRCA1�/� breast or ovarian cancer

phenotype are a product of dysfunction of XRHAMM,

TPX2, and/or Aurora A remains to be determined.

Finally, another breast and ovarian tumor suppressor,

BRCA2, which interacts physically with BRCA1, has re-

cently been implicated in the control of cytokinesis (Dan-

iels et al., 2004; Venkitaraman, 2002). It will be interesting

to learn whether the cytokinesis function of BRCA2 is re-

lated to the BRCA1/BARD1 mitotic/MT-organizing func-

tion and, if so, whether a defect in this complex set of

events contributes to a breakdown in BRCA1 and/or

BRCA2 tumor-suppression function.

EXPERIMENTAL PROCEDURES

Recombinant Proteins and Antibodies

The recombinant FLAG-BRCA1/HA-BARD1 heterodimers were pro-

duced using the Bac-to-Bac Baculovirus Expression System (Gibco

BRL) and doubly immunoaffinity purified prior to use. In vitro analysis

of Xenopus BRCA1/BARD1 E3 ligase activity was carried out as previ-

ously described for the human heterodimer (Mallery et al., 2002). Plas-

mid construction, protein expression and purification, and antibodies

used in this study are described in the Supplemental Experimental Pro-

cedures.

Xenopus Egg Extracts

Crude egg extracts were prepared as described (Murray, 1991). Meta-

phase extracts were released into interphase by addition of 0.5 mM

CaCl2. Immunodepletions were carried out using specific antibodies

bound to protein A-Sepharose. Incubations of extracts were carried

out at 21�C unless indicated otherwise. For more details on extracts

and immunodepletions, see the Supplemental Experimental Proce-

dures.

Analysis of Chromatin, Mitotic Spindles, and Asters

in Egg Extracts

DNA replication was analyzed by measuring the incorporation of

[a-32P]dATP into DNA as described (Dasso and Newport, 1990). Anal-

ysis of chromatin in egg extract is detailed in the Supplemental Exper-

imental Procedures. Metaphase bipolar spindles were assembled in

egg extract supplemented with 75 mg/ml of rhodamine tubulin (Cyto-

skeleton) as described (Desai et al., 1999). MT asters were induced

by supplementing CSF-arrested extract with 15 mM Ran(Q69L)-GTP.

For IF analysis of NuMA, XRHAMM, and g-tubulin localization, MT

spindle and aster structures were isolated by centrifugation through

a glycerol cushion, fixed, and stained with the corresponding anti-

bodies as described (Desai et al., 1999). TPX2 localization on MT as-

ters and spindles was analyzed by direct IF microscopy of extracts

supplemented with anti-TPX2 Ab (5 ng/ml). The antibody was labeled

with Alexa Fluor 488 carboxylic acid, succinimidyl ester (Groen et al.,

2004).

Immunoprecipitations

Immunoprecipitations from Xenopus egg extracts were performed as

detailed in the Supplemental Experimental Procedures.

Analysis of BRCA1/BARD1 Mitotic Function in HeLa Cells

HeLa cells were cultivated in DMEM/10% fetal calf serum. Cells were

seeded on coverslips in a 6-well plate and were transfected 24 hr later
550 Cell 127, 539–552, November 3, 2006 ª2006 Elsevier Inc.
with a mixture of hBRCA1 and hBARD1 SMARTpool siRNAs (100 nM

each) or with an equal amount of the control nontargeting siRNAs

(Dharmacon). Transfections were carried out using Oligofectamine re-

agent (Invitrogen) according to the manufacturer’s instructions.

Twenty-four hours after the first transfection, a second, identical,

transfection was carried out. Thirty-six hours after the second trans-

fection, cells were washed in PBS, fixed in methanol/acetone (7:3 mix-

ture) at �20�C, and immunostained. Alternatively, cells were permea-

bilized with digitonin and fixed with formaldehyde as described

(Joseph et al., 2002). Coverslips were mounted over DAPI-containing

VECTASHIELD stain (Vector Laboratories).

Fluorescence Microscopy and Image Analysis

Fluorescence microscopy of chromatin and spindle structures in egg

extract was carried out using an Eclipse E600 (Nikon) equipped with

a SPOT camera (Diagnostic Instruments) and an Axioskop 2 (Zeiss).

Fluorescence microscopy of HeLa cells was performed using the

Axioskop 2. Images were obtained and analyzed using Spot RT Soft-

ware v3.0 (Diagnostic Instruments) and AxioVision software (Zeiss).

Three-dimensional surface plots of MT asters were generated using

the program, ImageJ 1.34s (http://rsb.info.nih.gov/ij/).

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental Ex-

perimental Procedures, Supplemental References, five figures, and

one table and can be found with this article online at http://www.cell.

com/cgi/content/full/127/3/539/DC1/.
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