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SUMMARY
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characteriza-
tion of the PPIs underlying cellular processes is lacking. AlphaFold-Multimer (AF-M) has the potential to
fill this knowledge gap, but standard AF-M confidence metrics do not reliably separate relevant PPIs
from an abundance of false positive predictions. To address this limitation, we used machine learning on
curated datasets to train a structure prediction and omics-informed classifier (SPOC) that effectively sepa-
rates true and false AF-M predictions of PPIs, including in proteome-wide screens. We applied SPOC to an
all-by-all matrix of nearly 300 human genome maintenance proteins, generating �40,000 predictions that
can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High-con-
fidence PPIs discovered using our approach enable hypothesis generation in genomemaintenance. Our re-
sults provide a framework for interpreting large-scale AF-M screens and help lay the foundation for a pro-
teome-wide structural interactome.
INTRODUCTION

Most biological processes depend on the interaction of multiple

proteins.1 Stable protein-protein interactions (PPIs) form large

cellular structures (e.g., the nuclear pore) and stable molecular

machines (e.g., RNA polymerase), whereas transient interactions

underlie dynamic processes ranging from signaling to DNA repli-

cation. The�20,000 proteins encodedby the humangenomecan

theoretically combine in �200 million binary combinations, but

current estimates suggest that atmost�1.5millionpairings repre-

sent functional PPIs.2 Of these, only 50,000 (3%) have been iden-

tified,2 and �9,000 (0.5%) are structurally resolved. These esti-

mates, though necessarily imprecise, indicate that most PPIs

are both unknown and structurally inaccessible. Recognizing

this knowledge gap, investigators have long sought to discover

PPIsat scaleusingexperimental andcomputationalapproaches.3

Experimental approaches toward this goal include yeast two

hybrid assays,2,4 co-immunoprecipitation,5 column chromatog-

raphy-based complex fractionation,6 and cross-linking coupled

with mass spectrometry (XLMS).7 Computational strategies

include homology modeling,8,9 rigid body docking,10 and linking

genomic data with structural information.11 While these methods

have uncovered many PPIs, they are laborious, yield many false

positive (FP) and false negative (FN) interactions, and thus far

have not generated a comprehensive structural interactome.

To address these challenges, researchers are increasingly

using deep learning methods to model protein structures12,13
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and PPIs. The most popular predictive algorithm is AlphaFold-

Multimer (AF-M),12 a deep neural network that uses similar

principles as AlphaFold to predict the structures of multi-chain

complexes. AF-M was trained using five distinct regimens with

structures from the Protein Data Bank (PDB14), yielding five

models, each of which makes a structure prediction. AF-M is be-

ing used to uncover PPIs on the scale of pathways and organ-

isms.15–24 While many studies have examined AF-M’s ability to

correctly predict structures in curated PPI databases,25–27 there

has been less focus on separating true from false interactions in

large-scale unbiased screens. In addition, while various groups

have proposed different metrics for evaluating interface predic-

tion quality and confidence,28 there has, to our knowledge, not

yet been a systematic effort to compare these metrics on a sin-

gle, unbiased dataset or integrate them into a combined and

potentially better-performing metascore.

We previously used in silico screening with AF-M to uncover

how the protein DONSON promotes replication initiation.23

Folding DONSON with 70 core replication proteins and quanti-

fying the agreement among the five AF-M models (a metric we

call average models or ‘‘avg_models’’) identified five functional

DONSON-interacting proteins.29–31 In the first proteome-wide

AF-M screen, we also folded DONSON with over 20,000 human

proteins and scored the results using avg_models and other

AF-M confidence metrics (e.g., interface predicted template

modeling score [ipTM] and the predicted Docking Quotient

[pDockQ]).23 However, in this case, DONSON’s functional
or(s). Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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partners were distributed over the top hundreds or even thou-

sands of hits. Given the poor performance of existing metrics

in this proteome-wide screen, we sought to develop a more

robust scoring system that successfully identifies true PPIs

among interacting pairs that are predicted by AF-M.

In this study, we systematically assessed AF-M’s ability to

recover true PPIs embedded in a large set of decoy interactions.

This analysis showed that standard metrics indeed perform

poorly in identifying true interactions. We then used machine

learning to train a classifier on curated sets of positive and nega-

tive AF-M predictions of binary complexes. This classifier con-

siders structural and biological features of the pairwise predic-

tions and is called structure prediction and omics-informed

classifier (SPOC). SPOC outperforms standard metrics in sepa-

rating positive and negative predictions, including in several pro-

teome-wide in silico screens. We further applied SPOC to an all-

by-all interaction matrix of 286 human genome maintenance

(GM) proteins (�40,000 pairs), leading to the identification of

many high-confidence predictions. These can be viewed and

downloaded at predictomes.org, where users can also score

their own predictions with SPOC. In summary, our study intro-

duces SPOC, which guides interpretation of large-scale in silico

screens and reports a user-friendly web interface with large-

scale structure predictions in the GM field that drive hypothesis

generation.

RESULTS

Canonical confidence metrics are inadequate to
evaluate large-scale AF-M screens
The results of PPI screens using AF-M are typically ranked using

metrics such as ipTM (0–1 scale; >0.5 is considered confident),

AF-M’s estimate of interface accuracy.12 Another common

metric is pDockQ,32 which considers the predicted number of

interacting residues and their local positioning confidence,

given by the predicted local distance difference test (pLDDT)

(0–1 scale; >0.23 is confident). Because pDockQ and ipTM

scores can be high for structures that contain spurious inter-

faces,14,30 we previously developed ametric that also considers

another AF-M output, the predicted alignment error (PAE; 0–

30 Å scale, lower is better), a measure of AF-M’s confidence

in the global positioning of residues, including across interfaces.

Specifically, we filter AF-M predictions to identify those in which

at least five interfacial residue pairs have a PAE value <15 Å. In

addition, both residues in each pair must have pLDDT values

>50 and reside between 1 and 5 Å of each other (Figure S1A).

Only these ‘‘contact positive’’ (‘‘C+’’) pairs are subject to down-

stream analysis. We then quantify how well the independently

trained AF-M models agree on the position of all C+ pairs,

generating an ‘‘average models’’ (avg_models) score23 (Fig-

ure S1B; 0–1 scale, >0.5 is confident and means more than

half the models used during inference agree on all C+ contacts).

Although this metric was useful in scoring a small-scale in silico

screen, its performance was poor in a proteome-wide screen.23

To systematically measure the performance of various confi-

dence metrics in large-scale in silico screening, we assessed

their ability to rank a single functional interaction ahead of many

interactions that are likely false (‘‘ranking’’ experiment; Figure1A).
To this end, we identified 30 well-characterized protein com-

plexes that were not in the PDB and therefore could not have

informed AF-M (Table S1). The only exception was UVSSA-

RPB1, whose structure was published after the training cutoff

for AF-Mv2.3,whichwas used for our experiments.33Weconsid-

ered these pairs to be positives (Ps). For each pair, one protein

was selected as ‘‘bait’’ and paired with 1,000 different and

randomly selected prey proteins, the vast majority of which

should be negative (N). To reduce computation time and maxi-

mize throughput, all pairs were folded in three out of five AF-M

models (3 recycles; templates enabled). For example, the bait

protein UVSSA was folded with its known partner RPB1 and

with 1,000 random prey proteins. The resulting structures were

ranked by pDockQ, pDockQ2,28 ipTM, and avg_models. We

additionally ranked structures by interface (IF)-PAE27 by identi-

fying interface residue pairs (<5 Å distance) and averaging their

PAE values. The results showed that avg_models performed

best, giving UVSSA/RPB1 the highest rank, 7th out of 1,001 pairs

(Figure 1B). In 30 independent ranking experiments, avg_models

consistently outperformedall othermetrics (Figure 1C).However,

in proteome-wide screens, where the number of negatives

should be �20 times higher, even the avg_models metric would

be expected to mix the positive pair with 100–200 random inter-

actions. Indeed, although avg_models performed best in ranking

DONSON’s true interactors in a previous proteome-wide

screen,23 they were still mixed in with hundreds of other proteins,

the vast majority of which are presumably FPs (Figures S2A–

S2C).23 These results show that existing confidence metrics are

insufficient to identify true PPIs in large-scale in silico interaction

screens.

Curated sets of PPIs for classifier training
We sought to usemachine learning to train an algorithm or ‘‘clas-

sifier’’ that can accurately score and rank AF-M predictions. For

training and evaluation, we curated five datasets corresponding

to true (biologically meaningful) and negative (likely false or

spurious) pairs. To avoid confounding effects34 of training on

positive pairs whose interaction is not detected by AF-M, we

included only C+ pairs in our training sets.

We first constructed the negative set. Previous estimates

suggest that the human interactome might contain up to

�1.5 million interactions,2,35–37 implying that >99% of the

�200 million possible protein pairs do not interact (are nega-

tive). Therefore, to generate a set in which the vast majority of

pairs are negative, we folded 40,000 random, binary pairs

with our standard folding pipeline. Of these, 9,957 (�25%)

were C+ (Figure 2A). To discriminate against pairs that are in

the same pathway or complex but do not interact directly, we

also compiled a negative set of 3,770 ‘‘decoy’’ pairs that reside

in well-characterized multi-subunit complexes such as the pro-

teasome but do not directly interact. 24% (905) of these were

C+ (Figure 2B).

We also sought to create a positive reference set that reflects

undiscovered interactions that a screen is designed to uncover.

Using only structures from the PDB might bias training toward

protein complexes that are of current interest and amenable

to structure determination. We therefore mined XLMS datasets,

which capture PPIs in their physiological setting.38 While this
Molecular Cell 85, 1216–1232, March 20, 2025 1217
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Figure 1. Current metrics are inadequate to evaluate large-scale AF-M screens

(A) Schematic of a ‘‘ranking experiment’’ to evaluate AF-M prediction quality metrics.

(B) Example of a ranking experiment where the target pair UVSSA/RPB1 was embedded in a set of 1,000 decoy (UVSSA + random) pairs and evaluated using five

different metrics.

(C) Box plots comparing the performance of five different metrics across 30 different ranking experiments. Lines indicate medians, and boxes span the first to

third quartiles.

p values shown are from Wilcoxon signed-rank tests of all metrics compared with avg_models.
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type of data is also biased toward abundant proteins, the resi-

due proximity information provided by the crosslinks and the

overall diversity of interactions sampled made it an attractive

training set. We compiled 8,685 unique binary human protein

pairs based on cross-linked peptides from 20 XLMS studies

(Table S2). These were folded using AF-M, which yielded
1218 Molecular Cell 85, 1216–1232, March 20, 2025
3,226 C+ positive pairs, from which we selected only pairs in

which at least one of the crosslinks reported agreed with at least

one of the three AF-M models (cross-linked residues located

within 36 Å of each other, the upper bound of cross-linker

lengths used). After applying these criteria, 1,597 XLMS pairs

remained (Figure 2C).
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Figure 2. Assembling curated sets for classifier training

(A) Schematic illustrating the methodology for constructing the random pairing reference set (RefSetRandom). We generated 40,000 random pairs by repeatedly

sampling from the canonical human protein entries in UniProt. Pairs that exceeded 3,600 amino acids (GPUmemory limit) or that were present in another dataset

were discarded. As a final step, homology reduction was performed across all 5 datasets to ensure no two pairs are homologous.

(B) Schematic illustrating assembly of the PDB decoy set (RefSetDecoy). We selected protein pairs that do not make direct contact (defined as more than

10 residue pairs with heavy [non-hydrogen] atoms closer than 5 Å) in large multi-subunit complexes of known structure.

(C) Schematic illustrating assembly of the (RefSetXLMS) set, which was mined from human or mouse cross-linking datasets.

(D) Schematic illustrating assembly of the (RefSetXLMSR) set that was constructed by randomly shuffling and pairing proteins from the XLMS set. After repeated

sampling and AF-M folding the (RefSetXLMSR) contained more than 80% of proteins at identical frequencies.

(legend continued on next page)
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We also sought to create a negative dataset that mirrored the

XLMS dataset as closely as possible. To this end, we randomly

paired all unique proteins in the XLMS data (after homology

reduction, as described below) and folded them via AF-M (Fig-

ure 2D; ‘‘XLMS-Random [XLMSR]’’). This process was repeated

iteratively until XLMS and XLMSR sets containedmore than 80%

of the same proteins at identical frequencies (Figure S2D).

The XLMS set probably contains some FPs. Therefore, to

generate a ground truth dataset for independent evaluation of

metrics, we also folded protein pairs corresponding to structures

in the PDB that were deposited after the AF-M v2.3 training cut-

off. This set of 1,288 heterodimeric pairs was folded with tem-

plates disabled to avoid accessing PDB information deposited

after training. Of these, 946 yielded C+ AF-M predictions, which

were compared with the corresponding PDB structures using

DockQ.39 541 (57.2%) had DockQ >0.23, the standard Critical

Assessment of PRediction of Interactions (CAPRI) cutoff for

acceptable model quality (Figure 2E).

After assembling these five datasets, we ensured that no pair

displayed 30% or more sequence identity to both partners in any

other pair. This avoided any overlap or ‘‘data leakage’’ between

training and test sets. Furthermore, to reduce false negatives

in training, we purged all negative training sets of pairs

with >30% sequence similarity to any interacting pair in the PDB.

These homology reduction steps yielded two final positive sets,

RefSetXLMS (n=1,221) andRefSetPDB (n=410), and three negative

sets, RefSetRandom (n = 9,852), RefSetDecoy (n = 688), and

RefSetXLMSR (n = 1,103). Pairs from these RefSets were assigned

to either training or testing datasets, as outlined in Figure 2F.

We first used these curated datasets to further evaluate canon-

ical AF-M metrics. As shown in Figure S2E, 3.3%,19.4%, and

13.5% of the negative pairs (RefSetRandom + RefSetDecoy) ex-

hibited ‘‘positive’’ pDockQ2, ipTM, and avg_models scores,

respectively, even though at most �0.75% of these random and

decoy pairs should be positive.2 By contrast, the RefSetPDB had

many more positive hits, as expected (Figure S2E). However, for

all three metrics, there was significant overlap between positive

and negative pair distributions (Figure S2E). Together, these re-

sults are consistent with the poor performance of these metrics

in ranking experiments (Figures 1B, 1C, S2B, and S2C), under-

scoring the need for a better metric that distinguishes positive

and negative predictions.

We also asked how existing metrics stratify the XLMS dataset

that would be used for training (next section). As expected,

pairs from RefSetXLMS displayed higher mean pDockQ2, ipTM,

and avg_models scores than RefSetRandom + RefSetDecoy +

RefSetXLMSR (Figure S2F). Notably, a substantial number of

RefSetXLMS pairs exhibited low pDockQ2, ipTM, and avg_

models scores. It is presently unclear whether this was because

RefSetXLMS contains a substantial number of negative pairs or

because it contains true interactions that are difficult to detect

using conventional metrics.
(E) Schematic illustrating the assembly of the PDB reference set (RefSetPDB) and

DockQ scores (from comparing predictions to experimental structures) >0.23.

(F) Schematic illustrating how pairs from the RefSets were partitioned into differ

datasets to evaluated classifier performance post-training.

See Table S6 for all pairs used during training and testing.
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A classifier that distinguishes positive and negative
AF-M PPI predictions
To improve upon standard metrics in assessing AF-M predic-

tions, we trained a random forest machine-learning model40 on

the curated datasets. Random forests use random feature sub-

sets during training to build decision trees that each attempt to

assign the correct class to each instance of training data (Fig-

ure S3A). The resulting algorithm is called a classifier. During

inference, previously unseen instances are voted on by all trees,

yielding a single classifier score that ranges from 0 to 1. We

initially trained only on RefSetXLMS and its randomized counter-

part, RefSetXLMSR, in which protein pairs are closely matched.

To train a ‘‘structural classifier’’ on these sets, we extracted

several numeric features from the predicted interface of each

pair (Table S3 for definitions). These included not only AF-M-

based metrics (PAE, pLDDT, and avg_models scores) but also

other measurable properties of the interface, such as the number

of salt bridges and hydrogen bonds between interacting resi-

dues. We then used iterative pruning to remove uninformative

features (see methods). The resulting classifier assigned high

scores to a large percentage of negative pairs (RefSetRandom

and RefSetDecoy) (Figure S3B). We therefore retrained the struc-

tural classifier by also including a fraction of RefSetRandom pairs

(Figure S3C) or RefSetRandom and RefSetDecoy pairs (Figure S3D).

This reduced the scores for FPs (Figure S3C), which is desirable

given AF-M’s propensity to generate such predictions in larger

numbers.

After training the structural classifier on 75% of the data

(RefSetXLMS, RefSetPDB, RefSetXLMSR, RefSetRandom, and

RefSetDecoy), we evaluated its performance on the 25% testing

data held back. Performance was assessed by how many pos-

itives (RefSetXLMS and RefSetPDB) and negatives (RefSetXLMSR,

RefSetRandom, and RefSetDecoy) were identified above each

classifier threshold (‘‘true positives,’’ TPs, and ‘‘false posi-

tives,’’ FPs, respectively). Results were displayed as the recall

rate (Figure 3A, solid lines; fraction of all positives captured

above the threshold) and false discovery rate (FDR) (Figure 3A,

dotted lines; fraction of pairs captured above the threshold that

are negative). As a single measure of performance, we deter-

mined the recall rate when the FDRwas 5% (1 in 20 interactions

labeled by the classifier as true are false). Compared with exist-

ing metrics, the structural classifier exhibited the highest recall

(78%) at 5% FDR (Figure 3A; Table S6). We also evaluated per-

formance using receiver operating characteristic (ROC) curves

(Figure S4A), which quantify the TP and FP rates as a function

of classifier score. Using this analysis, the structural classifier

and avg_models performed comparably, achieving area

under the ROC curve (AUC) values of 0.92 and 0.91, respec-

tively. Of note, recall rates and derived statistics were calcu-

lated only for pairs that met the C+ interaction criteria, and

false negatives where AF-M did not predict contact were not

considered. Therefore, estimating the absolute recall rate
filtering steps. The final PDB reference set only includes C+ proteins that had

ent subsets for use as either training datasets to build classifiers or as testing
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Figure 3. Classifier performance on curated test sets

(A) A plot of recall (solid lines) and FDR (dotted lines; same as 1 – precision) as a function of selected threshold for five previously used metrics and the structural

classifier at a N:P ratio of 1:1. N is RefSetRandom + RefSetXLMSR + RefSetDecoy, and P set is RefSetXLMS + RefSetPDB.

(B) Schematic illustrating that as the abundance of false pairs rises, a higher classifier threshold is required to maintain a low FDR.

(C) Recall-FDR plots for pDockQ2 and the structural classifier at various N:P ratios. N is RefSetRandom + RefSetXLMSR + RefSetDecoy, and P set is RefSetXLMS +

RefSetPDB.

(D) Table comparing the recall fraction at 5% FDR and N:P = 128:1 for pDockQ2 (C), structural classifier (C), and other metrics (curves not shown).

(E) AUC under the receiver operating characteristic (ROC) curves for SPOC and the structural classifier. N is RefSetRandom + RefSetXLMSR + RefSetDecoy, and P set

is RefSetXLMS + RefSetPDB.

(F) Recall-FDR plots for SPOC at various N:P ratios. N is RefSetRandom + RefSetXLMSR + RefSetDecoy, and P set is RefSetXLMS + RefSetPDB.
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requires normalizing by the AF-M true positivity rate (40%),

which is derived from the fraction of the 1,288 PDB RefSet

pairs with an AF-M prediction achieving a DockQ score >0.23

(Figure 2E).
As in many other studies, the above evaluation of classifier

performance involved test sets with equal numbers of nega-

tives and positives (reviewed in Dunham et al.41). However,

this 1:1 N:P ratio does not accurately reflect most real-world
Molecular Cell 85, 1216–1232, March 20, 2025 1221
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Figure 4. Evaluating SPOC performance for biological discovery applications

(A) Box plots comparing the performance of four ranking metrics. The data for avg_models are the same as in Figure 1C. x axis was truncated above rank 200.

p values shown are from two-sided Wilcoxon signed-rank test of all metrics compared with SPOC.

(B) The SLF1/SMC6 true pair was embedded in 1,000 random pairs involving SLF1, and the AF-M predictions for each pair were ranked using three different

metrics.

(legend continued on next page)
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scenarios, themost extreme of which occurs when a single pro-

tein is screened against the entire proteome. In this case, we

estimated the N:P ratio of C+ AF-M predictions to be �80:1

(Figure S3E). In general, as the N:P ratio increases, so does

the number of negative pairs with high scores (FPs). Due to

this ‘‘invasion’’ by negatives, the threshold score must be

increased to maintain an acceptably low FDR (Figure 3B).

Therefore, to obtain a more realistic estimate of classifier per-

formance, we created test sets spanning N:P ratios from 1:1

to 128:1. As expected, the recall of positives was unaffected

by these ratios, but the FDR increased progressively as the pro-

portion of negatives increased (Figure 3C). At the 128:1 ratio

and 5% FDR, the structural classifier retained the highest recall

(42.6%), greatly outperforming the next closest metric

pDockQ2 (11.3%) (Figures 3C and 3D and see Figure S4B for

standard precision-recall curves). Therefore, the structural

classifier outperformed other metrics under conditions

mimicking a proteome-wide screen.

We wondered whether classifier performance could be

boosted further by considering biological properties of interact-

ing proteins. We therefore included genome-wide features

of each protein pair that were external to AlphaFold, including

co-dependency data from the cancer dependency map

(DEPMAP),42 co-expression data,43 T5 protein language model

embeddings,44 subcellular co-localization predictions from

DeepLoc 2.0,45 hit profiles from the BioGRID open repository of

CRISPR screens (BioORCS) database, and high-throughput

interaction experiments from the BioGRID database46

(Table S3). All features were derived by combining the metrics

of both proteins so that the classifier could not identify or learn

from protein identities within pairs. The resulting SPOC outper-

formed all other indicators, including the structural classifier:

SPOC’s AUC in ROC curves was 0.96 (Figure 3E), and at the

128:1 N:P ratio, it recalled 50.4% of positive pairs at 5% FDR

(Figures 3D and 3F). Strikingly, above a score of 0.89, SPOC

achieved an effective FDR of 0% on the test sets while still recall-

ing �50% of C+ positives, even at the highest N:P ratio (Fig-

ure 3F). Correcting this recall rate by the �40% true positive

rate of our protocol (Figure 2E) produces an estimated absolute

recall rate of 20% for SPOC on all PPIs.

As expected from SPOC’s superior performance over the

structural classifier, it is driven by both ‘‘biological’’ and ‘‘struc-

tural’’ features. Based on their Gini importance scores, structural

and biological features collectively contributed �55% and

�45% to performance, respectively (Figure S4C). Among struc-

tural features, a metric quantifying the minimum number of con-

tacts across all models was most important (12%), and among

biological features, it was the number of independent experi-

ments supporting an interaction in the BioGRID database

(21%). Although some BioGRID data are derived from studies
(C) DONSON was folded with more than 20,000 human proteins, and the result

teractors are indicated in cyan.

(D) Same as (C) but using SPOC for ranking.

(E) STK19, a recently identified TC-NER factor, was folded against more than 20

teractions are shown in cyan.

(F) USP37, a deubiquitinating enzyme associated with the replisome, was folded

SPOC. Verified interactions are shown in cyan.
focusing on a specific process or protein, the vast majority in-

volves unbiased interaction evidence mined from proteome-

wide screening efforts. Our results suggest that, by evaluating

structural and biological features of protein pairs, SPOC iden-

tifies true interactions in a curated dataset with good sensitivity

and high specificity, even at N:P ratios that approximate prote-

ome-wide screens.

SPOC enables proteome-wide screening for PPIs
To assess SPOC in real-world scenarios, we revisited the

ranking tests (Figure 1A), an orthogonal measure of perfor-

mance compared with classification of curated datasets.

SPOC outperformed all other metrics in these ranking experi-

ments (median rank = 1, mean rank = 4) (Figures 4A and 4B;

Table S1). Importantly, SPOC performed well on proteins in

different compartments and pathways, as expected given that

training was pathway- and compartment-agnostic (Table S1).

Moreover, whereas conventional metrics generally distributed

pairs evenly across their respective score ranges, SPOC more

clearly separated positives from negatives as shown in the

SLF1 and other ranking experiments (Figures 4B); Figure S5B–

S5D). This separation of true pairs from background is quanti-

fied by the Z score, which is highest for SPOC (Figure 4A). The

SLF1 ranking experiment is also notable because, in addition

to the desired prey SMC6, SPOC identified RAD18, a known

SLF1 interactor47–49 that was randomly included as part of the

1,000 protein ‘‘negative’’ set, as a hit. We also assessed how

SPOC ranked DONSON’s five interactors (MCM3, SLD5,

TOPB1, DPOE2, and DONSON; Figure S2A) in our proteome-

wide screen for DONSON interactors.23 Unlike all other metrics

(Figures S2B and S2C), including the structural classifier (Fig-

ure 4C), SPOC placed DONSON’s functional partners in

the top 6 hits out of more than 20,000 pairs (Figure 4D). This

was remarkable given that neither DONSON nor any of its

homologs were present in any training datasets. We also per-

formed a proteome-wide interaction screen for STK19, which

we recently showed is essential for transcription-coupled nucle-

otide excision repair.50 SPOC ranked its functional interactors

(RPB1, ERCC2, and ERCC8)51 in the top three hits (Figure 4E).

Finally, a proteome-wide screen for USP37 deubiquitinase inter-

actors ranked many ubiquitin-related proteins highly, as ex-

pected, as well as CDC45, which we recently implicated in teth-

ering USP37 to the replisome (Figure 4F).52 Consistent with our

data above (Figures S3B–S3D), training on a matched but less

complex negative set modestly reduced SPOC’s performance

(Figure 4A, SPOC vs. SPOCMatched, compare mean ranks, and

Figure S5A). Collectively, our results show that SPOC outper-

forms all other metrics in real-world ranking experiments and

can help discover PPIs ab initio in proteome-wide in silico

screens.
ing predictions were ranked using the structural classifier. True DONSON in-

,000 human proteins, and the predictions were ranked by SPOC. Verified in-

against more than 19,000 human proteins, and the predictions were ranked by
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Figure 5. Applying SPOC to find interactions in a biological pathway

(A) A plot of the F1 score (TP/(TP + 0.53(FP + FN))) as a function of SPOC score/threshold applied to the N (RefSetRandom + RefSetXLMSR + RefSetDecoy) and P

(RefSetPDB) test sets. The F1 score peaks at a threshold SPOC score of 0.33.

(B) Histogram showing the distribution of SPOC scores for Ns (RefSetRandom + RefSetXLMSR + RefSetDecoy) and Ps (RefSetPDB) split into pairs with and without

homologs in the PDB prior to the AF-M v2.3 training cutoff. A proposed cutoff for true interactions (0.33) as well as the%of Ps and Ns above the cutoff are shown.

(C) The distribution of SPOC scores on 11,523 C+ genome maintenance (GM) pairs. 10% of these interactions achieved a SPOC score >0.33.

(D) Histogram of STRING DB scores associated with the 1,151 pairs with SPOC score >0.33 shows that 625 (54.3%) top classifier scoring interactions also have

high (>900) STRING scores.

(E) Histogram of STRING DB scores for all 11,523 C+ GM pairs. 4,582 pairs have scores of 0, indicating that no prior text or data have suggested a potential

association, while 921 (8%) have scores greater than 900.

(legend continued on next page)
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In silico screening in GM
Having developed SPOC, we used it to score all possible pair-

wise interactions within a biological pathway. We folded nearly

all binary combinations of 286 core humanGMproteins, yielding

40,459 structure predictions. Of these, 11,523 (28.5%) satisfied

our contact criteria. To find a suitable SPOC score cutoff that

balances recall with precision, we plotted the F1 score (the har-

monic mean of precision and recall) as a function of SPOC.

This value peaked at a SPOC score of 0.33 (Figure 5A). This

score cutoff captured �89% of RefSetPDB pairs with no homol-

ogy to complexes AF-M was trained on, �82% of pairs in the

RefSetPDB with homology to AF-M training complexes, and

only 1.2% of negatives from RefSetRandom + RefSetXLMSR +

RefSetDecoy (Figure 5B). Across all GM pairs, 1,151 (2.8%) had

SPOC scores >0.33 (Figure 5C), implying that the average GM

protein might have four true partners in the matrix. Among this

set, 303 pairs achieve SPOC scores >0.89, the threshold asso-

ciated with an FDR of 0 during testing at N:P ratios of 128:1.

We addressed how SPOC compares to curation by the

STRING database, in which association strength scores

exceeding 900 (on a 0–1,000 scale) indicate strong potential for

a physical or functional interaction, and scores below 400 are

considered low confidence.53 Notably, 625 (54.3%) of the

1,151 GM pairs with a SPOC score >0.33 had STRING scores

>900 (Figure 5D), compared with 921 among all 11,523 C+ pairs

(8%) in the GM group (Figure 5E), an �7-fold enrichment. 63 of

the 1,151 pairs with high SPOC scores (�5%) were absent

from STRING, and 178 (�15%) had scores below 400 that are

considered insignificant (Figure 5D; Table S4). These findings

align with the fact that while there is some correlation (r = 0.58)

between SPOC and STRING scores, they often diverge (Fig-

ure 5F). Among the pairs that score highest by SPOC but are ab-

sent from STRING is MMS22L-RPA2, which is consistent with

biochemical evidence that the MMS22L-TONSL complex binds

to RPA-single-stranded DNA (ssDNA) filaments.54 Another

example is USP37-CDC45, which is consistent with our finding

that CDC45 recruits USP37 to the replisome.52 We also ad-

dressed how SPOC and the best prior metric in ranking experi-

ments, avg_models, compare in the analysis of the GM data.

Plotting the SPOC score vs. avg_models showed some correla-

tion (r = 0.58) but overall low agreement (Figure 5G). Importantly,

there were many pairs with low avg_models scores (%0.5) that

SPOC rated highly (>0.33; red box) and, conversely, many

pairs with high avg_models scores (>0.5) that SPOC down-

graded (%0.33; blue box). These results underscore that SPOC

makes substantial adjustments to previous rankings. We also

compared our SPOC results with large PPI databases to esti-

mate what percentage of high-confidence experimental PPIs

(PPI-DB+) are captured via our approach (Figure 5H). This anal-

ysis revealed that out of the 40,459 pairs in the GM set, 1,141 are

reported in both BioGRID and IntAct.55 Among these 1,141 pairs,
(F) A scatterplot comparing the SPOC score (y) to the STRING DB score (x) for th

fit line.

(G) A scatterplot comparing the SPOC score (y) to the avg_models score (x) for th

equivalence between the two scoring schemes would look. See text for explana

(H) A Venn diagram showing how pairs from the GM dataset are distributed acro

See Table S4 for all data relating to GM pairs.
442 (38.7%) had SPOC scores >0.33, while the remaining�60%

were assigned scores below the SPOC threshold. Many of these

almost certainly represent indirect interactions captured in PPI

databases.

TheGMgroup containsmanyPPIswith high SPOCscores that

are not structurally resolved but are nevertheless supported by

strong biochemical or genetic evidence, indicative of SPOC’s

ability to detect meaningful interactions. In several instances,

the PPI has also been mapped sufficiently to indicate that

the structure prediction is likely correct. An example is the

CIP2A-TOPBP1 pair (SPOC = 0.898), in which residues shown

to be critical for the interaction56 agree with the AF-M prediction

(see predictomes.org). Other examples include CIP2A-CIP2A

(SPOC = 0.998; Wang et al.57), FIGNL1-FIRRM (SPOC = 0.988;

Fernandes58 and Tsaridou and van Vugt59), and MMS22L-

TONSL (SPOC = 0.993; O’Donnell et al.,60 O’Connell et al.,61

and Duro et al.62) (Table S4). This retrospective validation sug-

gests that the GM dataset contains many valid predictions and

that in silico screening is a powerful approach to discover PPIs.

A web portal for AF-M predictions
To allow researchers to interact with the GM data, we created

predictomes.org, a user-friendly online database. Users can

browse an interactive matrix (Figure 6A) or a sortable list (Fig-

ure S6A) that can be ranked by SPOC score and other metrics.

Clicking on a matrix tile or a list entry displays an information

page that includes an interactive protein structure viewer (Fig-

ure 6B)63 from where the structure predictions can be down-

loaded. If experimental structures of the pair already exist, the

corresponding PDB entries are listed above the structure viewer

(Figure 6B; blue arrow), and the PDB structures can be superim-

posed on the AF-M prediction (Figure 6B; red arrow). The infor-

mation page also contains UniProt entry information, residue-

level evolutionary conservation, predicted residue contacts,

interactive PAE and pLDDT plots, and data from the STRING

and BioGRID databases about potential associations (Fig-

ure S6B; predictomes.org). These features allow rapid visualiza-

tion, ranking, and triage of thousands of structure predictions.

AI-driven hypothesis generation
The GM predictome contains many high-confidence predictions

that suggest interesting and testable hypotheses. We highlight

two examples related to replicative DNA polymerases. The first

involves lagging strand synthesis (Figure 7A). In this process,

DNA polymerase a (Pol a), which interacts stably with the

CDC45-MCM-GINS (CMG) replicative helicase,64 first primes

each new Okazaki fragment on the lagging strand template.

Replication factor C (RFC) then loads the processivity factor

PCNA on these primers, followed by primer extension by Pol

d. Interestingly, AF-M predicted with high confidence (SPOC =

0.947) that the non-catalytic POLD3 subunit of Pol d extends
e 11,523 C+ pairs in the GM dataset with a dashed red line indicating the best

e 11,523 C+ pairs in the GM dataset. The dashed red line shows how a perfect

tion of red and blue boxes.

ss 3 different subsets PDB+, SPOC+, and PPI-DB+.
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Figure 6. A web portal for AF-M predictions

(A) Screenshot of the interactive matrix from predictomes.org. Tile color darkness is proportional to the displayed confidence metric (SPOC). Tiles with orange

dots represent pairs that are found in the PDB. Specific biological pathways can be selected for display in rows and columns.

(B) Screenshot of the interactive structure viewer for the FAAP24-FANCM pair. The FANCM-FAAP24 structure (PDB: 4BXO; purple and pink chains) was su-

perimposed on the AF-M structure prediction (green and orange chains) using the superimpose tool (red arrow). There are different options to display the

structure, filter residues by pLDDT, and color the structures by different metrics such as pLDDT.
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Figure 7. Hypotheses suggested by predictomes.org

(A) Model of processive Okazaki fragment processing. During Okazaki fragment priming by Pol a, Pol d (via POLD3), and RFC (via RFC1) bind cooperatively to Pol

a (via POLA1). As soon as Pol a releases the primer, the tethered RFC occupies the primer template and deposits PCNA. When RFC dissociates, the tethered Pol

d occupies the primer template and initiates primer extension.

(B) AF-M prediction of POLA1 (gray; residues 310–1,264), POLD3 (yellow; residues 380–412), and RFC1 (cyan; residues 153–190) folded at the same time. For

POLA1-POLD3 and POLA1-RFC1 binary predictions, see Figures S7A and S7B and predictomes.org.

(C) AF-M-informed model of how the POLE1 catalytic domain is positioned near CMG’s exit channel by the interaction of CTF18 (red) with the winged-helix

domain of MCM7 (cyan) and the POLE1 catalytic domain. The model was assembled as follows: An AF-M prediction of POLE1 (C-terminal non-catalytic domain

shown as gray ribbon, N-terminal catalytic domain shown as light blue ribbon) was aligned on the C-terminal, non-catalytic lobe of POLE1 in the cryo-EM

structure of the human replisome (PDB: 7PLO,69 of which only MCM2-7, CDC45, and GINS are shown, POLE1 hidden). To model the primer template, the

structure of yeast POLE1 catalytic domain with a primer template (PDB: 4M8O) was aligned on the POLE1-NTD shown (yeast POLE1 hidden; primer template

shown). We also generated an AF-M prediction of a complex of CTF18, CTF8, DCC1, and the NTD of POLE1 (which matches key features of an analogous

experimental structure, PDB: 6S2E70) and aligned it on the POLE1-NTD shown. This revealed that the CTF18 (yellow)-DCC1 (orange)-CTF8 (orange) complex

binds the distal side of POLE1-NTD. Separately, MCM3, MCM7, and CTF18 were folded together and aligned onMCM7 from 7PLO. This shows that amovement

of 30 Å (yellow arrow) would superimpose the CTF18 aligned onMCM7 (red) and the CTF18 aligned on POLE1-NTD (yellow). Given the reported flexibility between

the NTD and CTD of POLE174 and some predicted flexibility between the NTD and CTD of CTF18 (https://alphafold.ebi.ac.uk/entry/Q8WVB6), CTF18 should be

able to bind MCM7 and POLE1-NTD simultaneously. In this way, CTF18 would tether the POLE1-NTD near the rear exit channel of CMG, with the leading strand

template (dark blue strand) being fed into the active site.
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an exposed beta sheet in the catalytic POLA1 subunit of Pol a

(Figures 7B and S7A; Table S5 for other confidence metrics).

This interaction was predicted from humans to fission and

budding yeasts (Table S5), and in budding yeast, previous ex-
periments mapped this interaction to the location in both

proteins predicted by AF-M.65,66 Interestingly, the same region

of POLA1 was also predicted to bind a small peptide in the

N-terminal unstructured region of RFC1 (SPOC = 0.743), the
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largest subunit of the RFC complex (Figures 7B and S7B;

Table S5). Strikingly, in three-way structure predictions, the

POLD3 and RFC1 peptides interacted with each other on the

surface of POLA1, with RFC1 draping over the composite beta

sheet formed by POLA1 and POLD3 (Figure 7B). This ternary

complex was predicted with high confidence across metazoans

and fission yeast but not in budding yeast (Table S5; no SPOC

score is available because SPOC currently only evaluates binary

predictions), and it is consistent with the isolation of a Pol d-Pol

a-RFC complex from mammalian cells.67 These predictions

suggest that when Pol a primes a new Okazaki fragment, RFC

and Pol d are already attached to Pol a, allowing seamless trans-

fer of the primer from Pol a to RFC to load PCNA, followed by

engagement of Pol d and primer extension (Figure 7A). In agree-

ment with thismodel, single-molecule experiments demonstrate

that yeast Pol d remains bound to the replisome over multiple cy-

cles of Okazaki fragment synthesis, an effect that depends on

Pol32, the yeast counterpart of POLD3.68

The second hypothesis we highlight addresses how the lead-

ing strand DNA polymerase ε (Pol ε) and the CTF18 complex are

oriented on the replisome. In particular, the location of the cata-

lytic domain of Pol ε on the replisome remains mysterious. AF-M

predicted an interaction between CTF18 and the winged-helix

domain of MCM7 (SPOC = 0.466), which resides near the rear

exit channel of CMG (Figure 7C, red and cyan ribbon diagrams;

Table S5). Together with the extensive interface between the

CTF18 complex and POLE1,70 these interactions would position

the catalytic, N-terminal domain (NTD) of Pol ε adjacent to

CMG’s rear exit channel (Figure 7C, gray ribbon diagram; see

figure legend). In thisway, the leading strand template (Figure 7C,

blue strand) would be fed directly into the Pol ε active site. The

above examples illustrate how large-scale screening for binary

PPIs leads tomechanistic hypotheses, some of which are readily

aligned with existing data.

SPOC tool
To facilitate broad access to SPOC, we created an online tool,

accessible at predictomes.org, that analyzes user-generated

AF-M structures. After uploading their predictions, users are

sent SPOC, ipTM, pDockQ, and avg_models scores for each

protein pair. We expect that SPOCwill facilitate the identification

of biologically plausible binary structure predictions.

DISCUSSION

Here, we report tools and resources that will help biologists

leverage the structure prediction revolution for mechanistic dis-

covery. First, we generated well-curated sets of positive and

negative protein pairs that can direct future machine-learning ef-

forts. Second, we used these datasets to train SPOC, a classifier

that effectively discriminates biologically meaningful and false

positive AF-M predictions. The power of SPOC is illustrated by

the fact that in proteome-wide screens, it readily identified

STK19, USP37, and DONSON partners whose function we vali-

dated.23,50,52Wemake SPOC available online to allow classifica-

tion of user-generated structure predictions. Third, we present a

SPOC-curated structural predictome of GM proteins, and we

give examples of how it powers hypothesis generation. Together,
1228 Molecular Cell 85, 1216–1232, March 20, 2025
thework helps lay the foundation for the eventual development of

a comprehensive structural interactome.

Two independent forms of evidence show that SPOC outper-

forms all previous metrics. First, on curated testing sets con-

taining positive and negative pairs, SPOC exhibits the highest

AUC values in ROC curves (0.96 vs. next best of 0.92), and it

captures the largest number of positive interactions under real-

istic screening scenarios where negatives greatly outnumber

positives (50% vs. 11% for pDockQ2, the next best-performing

conventional metric). Second, in orthogonal performance tests

involving in silico screens, including three that were proteome-

wide, SPOC ranked positive pairs higher than any other metric.

We discovered that a classifier trained on well-matched positive

and negative datasets (SPOCMatched) is slightly inferior to SPOC

trained on a dataset that better reflects the high ratio of negative

to positive pairs seen in cells. We infer that SPOC outperforms

SPOCMatched because the former was exposed to a more

diverse set of negative examples rather than data leakage be-

tween training and testing sets. Indeed, protein identities within

pairs were obscured in the pairwise features used during

training, and the ranking experiments demonstrate that SPOC

performed better than SPOCMatched in real-world tests that are

unrelated to training. This correspondence between RefSet

testing performance and orthogonal real-world tests suggests

that SPOC has learned meaningful decision boundaries rather

than flawed strategies derived from data leakage during training

and testing.

An important consideration is how to use SPOC to identify

positive pairs while minimizing FPs. As shown in Figure 5B, pos-

itive pairs can in principle have any SPOC score, but they are

strongly enriched for high scores. Therefore, the appropriate

SPOC threshold depends on context and what FDR is tolerable,

which can be judged from the recall-FDR curves in Figure 3F. A

proteome-wide screen is expected to involve an�80:1 N:P ratio

and is therefore best modeled by the 64:1 and 128:1 curves,

where maintaining a 5% FDR requires a minimum classifier

threshold of�0.89. By contrast, looking for direct interactors af-

ter enriching for partners either via pathways analysis or through

experiments (e.g., immunoprecipitation [IP]-MS pulldown) is

more appropriately evaluated at a lower ratio such as 16:1 or

4:1, where 5% FDR is compatible with thresholds of �0.5–

0.75. In some cases, the use of even lower SPOC thresholds

may be justified, such as the 0.33 cutoff we employed to analyze

the predictomes GMmatrix. However, regardless of the specific

use case or dataset, the best and safest strategy is always

to analyze interactions from highest to lowest SPOC score.

Although a SPOC score of >0.89 yielded an apparent FDR =

0 in curated test datasets, even at the 128:1 ratio (Figure 3F),

it is uncertain whether this holds true for real-world data. In other

words, a high score alone never provides proof of an interaction,

and conversely, a low classifier score is not proof that an inter-

action is false. Finally, although SPOC was not explicitly trained

to report on interface correctness, model quality is implicit

because many of the features that contribute to the score are

standard AF-M confidence metrics. Despite the above limita-

tions, we believe that when used judiciously, SPOC is a powerful

tool to prioritize AF-M interactions and drive mechanistic

discovery.

http://predictomes.org
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It is important to consider possible sources of erroneous clas-

sifications in AF-M screens. FPs might arise because AF-Mwas

only trained on true positives from the PDB and therefore at-

tempts to find an interaction solution for all pairs. Some FPs in

this class might in fact interact if brought together in vitro (‘‘bio-

physical interactors’’) but do not do so in cells due to a lack of

co-expression or co-localization. Physical interaction studies

on such pairs will be required to distinguish these possibilities.

Many false negatives probably involve protein pairs that are

scaffolded by other factors andwhose interaction is toominimal

to be detected by AF-M in binary screens. Other false negatives

may arise because we folded each pair in only three models to

maximize throughput. Some of these can probably be elimi-

nated by folding pairs in all 5 models, increased sampling,71

or segmenting proteins.72,73 SPOC almost certainly also has

‘‘blind spots.’’ These will include PPIs with physical features

that are not well represented in the XLMS data on which the

classifier was trained, as well as pairs that are so distinct from

any that AF-M was trained on that they cannot be structurally

modeled. SPOC is also expected to give low scores to protein

pairs that do not exhibit biological patterns (e.g., co-expression,

co-immunoprecipitation, and genetic co-dependence) typically

associated with interacting proteins. An example would be a

PPI in which the two interacting proteins’ primary functions

and partners are in orthogonal pathways. Finally, while a pair’s

SPOC score will likely suffer if it rates poorly in BioGRID, the

score can still be strong based on a pair’s other features

(e.g., DONSON/TOPB1, USP37/CDC45, and STK19/ERCC8).

To improve SPOC, training on more diverse structural and bio-

logical datasets will likely be required.

A web version of SPOC is accessible at predictomes.org and

calculates scores for researcher-generated AF-M predictions.

This tool works best when applied to predictions generated us-

ing AF-M settings that resemble those used to train the classifier.

Accordingly, if a pair was folded in all five models, the tool

randomly analyzes three tomirror our training regimen. However,

other AF-M settings, such as the number of recycles or dropout

enabling that cannot be adjusted post hoc, may impact predic-

tions. In many cases, it will therefore be advisable to regenerate

and analyze AF-M structures using the same protocol used for

classifier training.

The data in predictomes.org catalyze mechanistic discovery.

By sorting each protein’s putative partners as a ranked list and

displaying predictions in an interactive structure viewer with rele-

vant, accompanying information, users can rapidly triage vast

numbers of structure predictions and formulate hypotheses.

Even in a well-defined pathway such as GM, comprehensive in

silico screening highlights interactions that appear to be ‘‘hiding

in plain sight,’’ such as the predicted interaction between POLA1

with POLD3 and POLA1 with RFC1. Such binary predictions

often motivate higher-order folding experiments involving three

or more proteins. For example, AF-M predicted the existence

of a ternary complex of Pol d, RFC, and Pol a that promotes Oka-

zaki fragment synthesis in a processive assembly line, consistent

with single-molecule experiments.68 Generating, organizing, and

classifying structure predictions in major biological pathways,

and eventually proteome wide, has the potential to launch a

new era of mechanistic discovery in the biological sciences.
Limitations of the study
Three additional limitations of our analysis are worth noting.

First, our analysis currently ignores pairs where AF-M fails to

produce an interface prediction and thus will miss any positive

interactions not predicted by AF-M. Second, while we have

used retrospective validation of known PPIs to demonstrate

SPOC’s performance, large-scale experimental validation of

predicted pairs (e.g., by XLMS) will be required to further assess

SPOC’s ability to identify previously unrecognized PPIs. Finally,

due to its reliance on biological features from large-scale human

cell studies, the current iteration of SPOC can only be used to

score human protein pairs.
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concatenated paired and un-unpairedMSAs for the query proteins. Themajority of predictions were run on 40GBA100NVIDIA GPUs

while a subset was run on L40S NVIDIA GPUs. Given the memory limitations of these GPUs, we generally cap all jobs at 3,600 amino

acids total. In certain cases where a structure is of particular interest, we make exceptions and run AF-M on sequences exceeding

3,600 amino acids.

Finding contacts in AF-M structures
To determine which residue pairsmake valid interfacial contacts in AF-M structures, we use amulti-tiered filtering approach that con-

siders distance along with the pLDDTs and PAE scores. The first step is to iterate through the structure and find all residue pairs in

which at least 1 pair of heavy atoms are < 5Å apart and where both residues have pLDDTs > 50. To avoid clashes, we then eliminate

pairs with any heavy atoms closer than 1Å. Next, the two PAE scores associated with each residue pair (x, y and y, x) are examined,

and if they are < 15 Å, this residue pair is added to the list of valid interfacial contacts. This pipeline differs from our previous

approach23 where our distance limit was < 8 Å and we did not consider clashes.

Genome maintenance pair generation
Based on literature and expert curation we selected 286 human proteins. We then generated all possible unique binary pairs of these

proteins and proceeded to fold them in 3 AFM models (models 1,2,4). Due to GPU memory restrictions and time limits, we almost

always limit the total amino acid length of pairs we folded to below 3,600 residues. In rare cases where proteins are of particular in-

terest to the community (i.e. BRCA2) we sometimes exceeded this limit and ran pairs that exceeded 3,600 amino acids in length.

Plots
All plot visualizations were generated using the Python library matplotlib and seaborne running online in Google Colab Jupyter

Notebooks.

PDB human pair contact identification
The PDB API80 was used to find all cryo-EM and X-ray crystallography structures with overall resolutions < 3.5 Å containing at least

two annotated human protein chains. Once all structures with these criteria were retrieved, we iterated through all possible combi-

nations of human chain pairs to find those in contact. Chains were considered to be in contact if they had at least 10 residue pairs with

heavy atoms closer than 5 Å. The PDB SIFTS API was used to map PDB chain entries to their corresponding UniProt identifiers.

Based on this analysis of the PDB performed on January 10, 2024, there were 8,472 unique human binary protein pairs.

PDB pair retrieval and DockQ Calculation
We first identified all human heterodimeric pairs structurally resolved in the PDB after the AlphaFold-multimer version 3 training cutoff

date (September 30, 2021). For each of these pairs, we selected the structure and chain-pair that had themost interfacial residue pair

in contact, as defined by our contact criteria (heavy atoms < 5Å). The PDB API was then used to download the atomic coordinates

corresponding to each of the chains in CIF format using the following URL: https://models.rcsb.org/v1/{pdb_id}/atoms?label_asy-

m_id={chain}&model_nums=1&encoding=cif&copy_all_categories=false&download=false.

Each chain was extracted from the two individual chain CIF files, re-parsed into PDB format, and combined into a new PDB file

containing only those two chains. Double-letter PDB chain codes were remapped to single-letter chain codes to maintain compat-

ibility with the PDB format. We then used the DockQ script from the GitHub repository (https://github.com/bjornwallner/DockQ/tree/

v1.0) to measure DockQ scores between the two-chain PDB structure file and each of the three AlphaFold-Multimer (AF-M) predic-

tions (models 1, 2, and 4) made for each pair.

Globally optimal sequence alignments between the native and model chains were performed using the EMBOSS needle script,

which is called internally within the DockQ script. In cases where this alignment failed, often due to insufficient sequence similarity

between the native andmodel chains (especially in caseswhere short peptides were experimentally solved), the DockQ script did not

produce a score, and these pairs were discarded. The highest DockQ score obtained from the three predictions was recorded as the

final DockQ score, measuring the interface similarity between the ground truth PDB structure and the AF-M model.

Fetching protein sequences
Unless otherwise stated, all protein sequences used for a particular protein represent the full-length isoform sequence reported by

the UniProt database at the time of sequence retrieval. To make sequences compatible with AF-M, any non-canonical amino acids

not among the standard 20 were removed.

Homology reduction of training and testing datasets
Once all contact positive (C+) protein pairs were identified across all 5 datasets used for training and testing we then identified ho-

mologous pairs and then randomly selected one pair from a homology set and removed all others. Homologous pairs were identified

by first clustering the reviewed human proteome using MMSeqs277 and requiring 50% overlap and 30% sequence similarity. After

protein clustering, every protein in every pair was assigned to a cluster id. Homologues pairs were then identified by finding pairs

where both proteins in the pair were in the same clusters as the two proteins in another pair.
e2 Molecular Cell 85, 1216–1232.e1–e5, March 20, 2025
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Identifying Homologous pairs in the PDB RefSet and PDB pairs in the AF-M Training set
PDB protein entries were first retrieved by downloading https://files.wwpdb.org/pub/pdb/derived_data/pdb_seqres.txt.gz and then

filtering out non-protein entries by entity type. We then used MMSeqs2 to create a map between every reviewed human protein and

homologous PDB chains at 30% sequence similarity using the following command:

mmseqs easy-search hs_proteome_uniprot_id_map.fasta pdb_protein_entries.fasta 2024119_hs_pdb_vs_uniprot_db_v3.txt

tmp -s 7.5 –min-seq-id 0.3 –min-aln-len 6 -e 0.1 –format-mode 4 –exhaustive-search

This MMSeq2mapping output was then read in via Python and for every pair in our RefSetPDB we identified those PDB entries were

both proteins contained interacting homologs. Deposit dates for those entries were then fetched from the PDBAPI and any pair with a

homologous pair deposited before the 2021-09-30 AF-M v2.3 training cutoff was considered to have a homolog in the AF-M

2.3 training set. In a handful of instances (n = 6) this procedure failed to identify any structures containing the pair which is false given

that we sourced pairs from the PDB. Investigating these cases revealed that failure occurred because one or more partners was only

present as a short peptide in the PDB structure which in turn caused MMSeqs2 to discard mappings to a UniProt entry due to our

maximum e-value cutoff. For the purposes of our homolog analysis of SPOC performance we excluded these failed PDB pairs.

Random protein sampling
We randomly sampled proteins by randomly shuffling a list of UniProt IDs from the reviewed canonical human proteins downloaded

from UniProt and taking the top N ids from this list.

Extracting and consolidating cross links from publications
We found 20 publications that performed large-scale cross-linking mass spectrometry (XLMS) studies on the scale of whole pro-

teomes or organelles and provided an easily accessible table of identified crosslinks (Table S2). In cases where cross-links were

in mouse proteins, we used the UniProt ID mapping tool78 to map mouse UniProt IDs to gene symbols to canonical human

UniProt IDs. The mouse and human sequences were aligned using the BioPython Align package, and the crosslinked residue

numbers were mapped from mouse coordinates to human coordinates. We discarded any crosslinks where this mapping process

failed on the ID or residue level. After collecting all unique residue cross-linking pairs, they were deduplicated first on the level of res-

idues and then on the level of protein pairs. We additionally performed random trimming of over-represented proteins and protein

classes. This was done by iteratively identifying the most-common protein across all pairs, randomly selecting all but 28 pairs con-

taining that protein, and then removing them from the list. This process was repeated until no protein was represented more than

28 times across all pairs. After this process, all histone proteins were identified using a list of histone identifiers and randomly

removed until histone containing pairs represented only 1% of the final XLMS dataset.

Random forest training and testing
We used the RandomForestClassifier package from the scikit-learn to train our random forest (RF) models. We implemented a pro-

cedure that combined a grid search of random forest hypermeters along with iterative pruning of features with low Gini importance

scores to generate classifiers using a minimal number of features. Our grid search was based on the following parameters:

param_grid = {’n_estimators’: [150, 200, 250],’max_depth’: [3, 5, 7],’min_samples_split’: [2, 5],’bootstrap’: [True, False],’criterion’:

[’gini’,’log_loss’]}. Hyperparameter optimization was performed over K-fold test, train splitting with n = 3 across the training set

(Table S6) with the goal of selecting the combination of settings that produced a RF achieving the highest AUC. After each round

of hyper-parameter tuning, features were ranked from most to least important via their Gini scores and all features with Gini

scores < 0.01 were discarded. The process was then repeated with the reduced feature set until feature pruning ended because

no more features with Gini scores below 0.01 were identified. For the structural classifier, we started with a set of 42 features that

were reduced to 24 via pruning (Table S3, tabs StructuralC_pre_pruning and StructuralC_post_pruning, respectively). Similarly,

SPOC was initially supplied with 56 features and ended up with a final set of 20 features after pruning (Table S3, tabs SPOC_pre_

pruning and SPOC_post_pruning ). Otherwise, we used the default values specified by scikit-learn. Data was randomly split, with

75% of pairs from each reference set selected for training while the remaining 25% were used for testing. ROC curve visualizations

and AUCs were generated via the roc_curve, AUC functions imported from the sklearn.metrics package. To generate FDR recall

plots, we randomly sub-sampled from the held back test data (n = 10 independent times) and constructed test sets with specific

ratios of negative to positive examples ranging from ratios of 1:1 to 1:128. In the 1:1 case this corresponded to 714 P to 714 N

test pairs while in the 1:128 case, 24 P and 2,912 (all) N pairs were used.

AlphaMissense data processing
Data was downloaded from the human proteome-wide precomputed amino acid substitution data table hosted at (https://console.

cloud.google.com/storage/browser/dm_alphamissense;tab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false). For each

residueposition,weaveraged theAlphaMissense score across all 19possiblemissense variants predicted toproducea single, per-res-

idue missense score. These values were then loaded into a JSON dictionary where each key is a UniProt ID that points to a numeric

vector (with a length equivalent to the amino acid count of the protein) where each entry is a number from 0 to 100 that represents

the averaged missense score predicted for mutating the residue at the corresponding position to a different amino acid.
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RNA Coexpression data
mRNA co-expression data for human proteins was downloaded from the online web repository coexpressDB (https://zenodo.org/

record/6861444/files/Hsa-u.v22-05.G16651-S245698.combat_pca.subagging.z.d.zip). This download returns a folder with files

for each gene such that the name of the file is the ENTREZ gene ID. For every protein/gene we sorted by co-expression score

(high to low) and took the top 500 pairs beforemapping. ENTREZ gene IDswere thenmapped to canonical UniProt entry names using

the UniProt mapping tool. Pairs where the mapping process failed were discarded. Score values were used as supplied by the

database.

DEPMAP data
CRISPR KO gene effect data was downloaded from the online resource DEPMAP (https://depmap.org/portal/download/custom/).

Every protein was converted into a DEPMAP vector of length n= 1,095 (n = # profiled cell lines) where every entry/dimension in

the vector corresponds to the Chronos output (gene effect) for that gene in a cell line.

BioGRID ORCS data processing
CRISPRKOdata for studies conducted in humancell lineswasdownloadedasa series of files from theBioGRIDfile repository (https://

downloads.thebiogrid.org/File/BioGRID-ORCS/Release-Archive/BIOGRID-ORCS-1.1.15/BIOGRID-ORCS-ALL-homo_sapiens-1.

1.15.screens.tar.gz). Every gene was mapped to a canonical UniProt ID and for each gene its appearance across all the CRISPR

screens was converted into binary vectors of length n=1,243 (n = # of screens) where each index represents whether that gene

was considered a ‘‘hit’’ (0 = no hit, 1 = hit) by the criterion employed by a specific screen.

BioGRID data
BioGRID release 4.4.225 interaction data was downloaded as a tab delimited file on August 29, 2023 using the link supplied by the

online repository at: https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-4.4.225/BIOGRID-ALL-4.4.225.

mitab.zip. Interactions were then filtered for human only (taxid:9606). Human protein pairs were then identified using UniProt IDs

included in the file. The number of times a unique human pair was found in this file was then used as the biogrid_detect_count feature

and encoded into a nested dictionary JSON file where uniprot ids are used as keys and point to the detect count value.

DeepLoc2 protein localization predictions
To have uniform localization information for proteins that went beyond standard and incomplete annotations, we utilized predictions

from the DeepLoc 2.0 protein sequence transformer model. We downloaded (https://services.healthtech.dtu.dk/cgi-bin/sw_

request?software=deeploc&version=2.0&packageversion=2.0&platform=All) and installed a local copy of DeepLoc 2.0. After

installation, we inputted a FASTA file containing all canonical SwissProt reviewed sequences for the human proteome downloaded

from UniProt. We then used the ESDM1B ‘‘fast’’ model to predict individual localization probabilities split across 10 different

possible categories for all sequences. These values were then loaded and stored in a JSON dictionary where each key is a

UniProt ID that points to a numeric vector with the 10 localization probabilities output by DeepLoc 2.0.

H5 protein embeddings
Per-protein embeddings (vectors of length 1024) were retrieved for all reviewed UniProtKB Swiss-Prot human entries via download

from UniProt (https://ftp.UniProt.org/pub/databases/UniProt/current_release/knowledgebase/embeddings/UP000005640_9606/

per-protein.h5).

STRINGDB scores
All humanprotein association scoresweredownloaded from theSTRINGv12database at (https://stringdb-downloads.org/download/

protein.links.detailed.v12.0/9606.protein.links.detailed.v12.0.txt.gz). Each entry in the file lists a pair of proteins identified by their

STRINGDB ID consisting of the taxon ID (9606 for humans) concatenated with an ENSEMBL protein id. These ENSEMBL protein

ids were mapped to UniProt IDs using UniProt’s mapping API. In cases where this mapping yielded non-canonical UniProt IDs or

non-SwissProt entries, these ENSEMBL protein ids were mapped to genes and then each gene was mapped to the canonical

SwissProt UniProt ID.

Replisome structural model
An AF-M prediction of the pol ε holoenzyme (POLE1-POLE2-POLE3-POLE4; only POLE1 shown) was aligned on the C-terminal, non-

catalytic lobe of POLE1 in a cryo-EM replisome structure (PDB: 7PLO) using ChimeraX.79 Tomodel the primer template, the structure

of yeast POLE1 catalytic domain with a primer template (PDB: 4M8O) was aligned to the catalytic domain of the AF-M POLE1 struc-

ture prediction from the pol ε holoenzyme above. The catalytic domain of POLE1(residues 1-1180), CTF18, CTF8, DCC1were folded,

in which POLE1 made extensive contacts with the CTF18-CTF8-DCC1 complex. The resulting structure was also aligned on POLE1

of the pol ε holoenzyme. Separately, MCM3, MCM7, and CTF18 (only well-ordered residues 281-865) were folded together. MCM3

and the N-terminal lobe of MCM7 (residues 1-319) were deleted, and the remaining C-terminal lobe of MCM7 and CTF18 were

aligned on MCM7 from 7PLO.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All graphs display the number of data points presented and analyzed. Ranking data was analyzed using Wilcoxon signed-rank tests

as implemented in the scipy.stats.wilcoxon Python function.

ADDITIONAL RESOURCES

The genome maintenance dataset is available for interactive browsing online at predictomes.org.
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